Direct Filter Approach
Arguments
- horizon
horizon (bandwidth) of the symmetric filter.
- degree
degree of polynomial.
- density
hypothesis on the spectral density:
"uniform"
(= white woise, the default) or"rw"
(= random walk).- targetfilter
the weights of the symmetric target filters (by default the Henderson filter).
- passband
passband threshold.
- accuracy.weight, smoothness.weight, timeliness.weight
the weight used for the optimisation. The weight associated to the residual is derived so that the sum of the four weights are equal to 1.
Details
Moving average computed by a minimisation of a weighted mean of three criteria under polynomials constraints. The criteria come from the decomposition of the mean squared error between th trend-cycle
Let \(\boldsymbol \theta=(\theta_{-p},\dots,\theta_{f})'\) be a moving average where
\(p\) and \(f\) are two integers defined by the parameter lags
and leads
.
The three criteria are:
Examples
dfa_filter(horizon = 6, degree = 0)
#> q=6 q=5 q=4 q=3 q=2 q=1
#> t-6 -0.01934985 -0.030012305 -0.0408092039 -0.04068978 -0.03622977 -0.03672904
#> t-5 -0.02786378 -0.033359743 -0.0411977083 -0.04106306 -0.03072500 -0.01681858
#> t-4 0.00000000 0.001617955 0.0031630124 0.00320233 0.01204228 0.04093710
#> t-3 0.06549178 0.071870402 0.0795170526 0.07941604 0.08550769 0.12220301
#> t-2 0.14735651 0.154367848 0.1632402190 0.16312197 0.16726498 0.20144314
#> t-1 0.21433675 0.218278871 0.2226926829 0.22264487 0.22680122 0.25014591
#> t 0.24005716 0.238829368 0.2358094694 0.23588451 0.24196319 0.24750757
#> t+1 0.21433675 0.207944469 0.1985282507 0.19868118 0.20515234 0.19131090
#> t+2 0.14735651 0.138054450 0.1272631817 0.12741087 0.12822306 0.00000000
#> t+3 0.06549178 0.057433857 0.0513680901 0.05139107 0.00000000 0.00000000
#> t+4 0.00000000 -0.002016302 0.0004249535 0.00000000 0.00000000 0.00000000
#> t+5 -0.02786378 -0.023008869 0.0000000000 0.00000000 0.00000000 0.00000000
#> t+6 -0.01934985 0.000000000 0.0000000000 0.00000000 0.00000000 0.00000000
#> q=0
#> t-6 -0.02675707
#> t-5 0.01420277
#> t-4 0.08880802
#> t-3 0.17595533
#> t-2 0.24508791
#> t-1 0.26838604
#> t 0.23431701
#> t+1 0.00000000
#> t+2 0.00000000
#> t+3 0.00000000
#> t+4 0.00000000
#> t+5 0.00000000
#> t+6 0.00000000
dfa_filter(horizon = 6, degree = 2)
#> q=6 q=5 q=4 q=3 q=2 q=1
#> t-6 -0.01934985 -0.031105441 -0.04888338 -0.05764640 -0.04948784 -0.007961043
#> t-5 -0.02786378 -0.030840929 -0.03722806 -0.04096008 -0.03686433 -0.036884447
#> t-4 0.00000000 0.005553125 0.01509948 0.02043095 0.01419427 -0.019710732
#> t-3 0.06549178 0.075680118 0.09443554 0.10664294 0.09370622 0.043998864
#> t-2 0.14735651 0.157683962 0.17753428 0.18829824 0.17738803 0.138819404
#> t-1 0.21433675 0.221376079 0.23306525 0.23716685 0.23398281 0.237104542
#> t 0.24005716 0.241802252 0.23989975 0.23478728 0.24355756 0.308924895
#> t+1 0.21433675 0.210178737 0.19487115 0.18311315 0.20164062 0.335708518
#> t+2 0.14735651 0.138186344 0.11635204 0.10287717 0.12188266 0.000000000
#> t+3 0.06549178 0.054026865 0.03459332 0.02528989 0.00000000 0.000000000
#> t+4 0.00000000 -0.009233115 -0.01973936 0.00000000 0.00000000 0.000000000
#> t+5 -0.02786378 -0.033307998 0.00000000 0.00000000 0.00000000 0.000000000
#> t+6 -0.01934985 0.000000000 0.00000000 0.00000000 0.00000000 0.000000000
#> q=0
#> t-6 0.13737578
#> t-5 -0.08485848
#> t-4 -0.16654786
#> t-3 -0.10200794
#> t-2 0.09325916
#> t-1 0.38573469
#> t 0.73704465
#> t+1 0.00000000
#> t+2 0.00000000
#> t+3 0.00000000
#> t+4 0.00000000
#> t+5 0.00000000
#> t+6 0.00000000