Accuracy/smoothness/timeliness criteria through spectral decomposition
Source:R/fst_filters.R
mse.RdAccuracy/smoothness/timeliness criteria through spectral decomposition
Usage
mse(aweights, sweights, density = c("uniform", "rw"), passband = pi/6, ...)Arguments
- aweights
moving_averageobject or weights of the asymmetric filter (from -n to m).- sweights
moving_averageobject or weights of the symmetric filter (from 0 to n or -n to n).- density
hypothesis on the spectral density:
"uniform"(= white woise, the default) or"rw"(= random walk).- passband
passband threshold.
- ...
other unused arguments.
References
Wildi, Marc and McElroy, Tucker (2019). “The trilemma between accuracy, timeliness and smoothness in real-time signal extraction”. In: International Journal of Forecasting 35.3, pp. 1072–1084.
Examples
filter <- lp_filter(horizon = 6, kernel = "Henderson", endpoints = "LC")
sweights <- filter[, "q=6"]
aweights <- filter[, "q=0"]
mse(aweights, sweights)
#> accuracy smoothness timeliness residual
#> 0.01507927 0.52517037 0.05226739 0.31059437
# Or to compute directly the criteria on all asymmetric filters:
mse(filter)
#> q=6 q=5 q=4 q=3 q=2
#> accuracy 6.024615e-31 3.049917e-04 0.0023586820 0.0039385492 0.0010541330
#> smoothness 2.495366e-32 1.407955e-03 0.0051133637 0.0059461839 0.0181732313
#> timeliness 3.783119e-31 6.949349e-05 0.0001954977 0.0001533431 0.0007302353
#> residual -4.091914e-31 1.376327e-03 0.0052601574 0.0050943353 0.0144950219
#> q=1 q=0
#> accuracy 0.001615599 0.01507927
#> smoothness 0.147090323 0.52517037
#> timeliness 0.009039553 0.05226739
#> residual 0.076237423 0.31059437