TRAMO for ERRORs (TERROR) controls the quality of the data by checking outliers at the end of the series
Usage
terror(
ts,
spec = c("trfull", "tr0", "tr1", "tr2", "tr3", "tr4", "tr5"),
nback = 1,
context = NULL
)Value
a mts object with 7 variables:
actualthe actual data at the end of the series.forecastthe forecast of the actual data at the end of the series.errorthe absolute errors (= observed - forecasts).rel.errorrelative errors ("scores") : ratios between the forecast errors and the standard deviation of the forecasts of the last observations (positive values mean under-estimation).rawthe transformed series. More especially, if the chosen model implies a log-transformation, the values are obtained after a log-transformation. Other transformations, such leap year corrections or length-of periods corrections may also be used.frawthe forecast of the transformed series.efrawthe absolute errors of the transformed series.
Examples
terror(rjd3toolkit::ABS$X0.2.09.10.M, nback = 2)
#> actual forecast error rel. error transformed tr.fcast tr.error
#> Jul 2017 1445.5 1468.903 -23.40336 -0.4328439 7.276211 7.292271 0.03710535
#> Aug 2017 1303.1 1341.213 -38.11282 -0.7664734 7.172501 7.201330 0.03761155