Tramo is a particular regarima model estimation algorithm, mainly used to linearized the series before performing a decomposition with Seats
Arguments
- y
- the dependent variable (a - tsobject).
- order, seasonal
- the orders of the ARIMA model. 
- mean
- Boolean to include or not the mean. 
- X
- user defined regressors (other than calendar). 
- X.td
- calendar regressors. 
- ao, ls, so, tc
- Boolean to indicate which type of outliers should be detected. 
- cv
- numeric. The entered critical value for the outliers' detection procedure. If equal to 0 the critical value for the outliers' detection procedure is automatically determined by the number of observations.
- ml
- Use of maximum likelihood (otherwise approximation by means of Hannan-Rissanen). 
- clean
- Clean missing values at the beginning/end of the series. Regression variables are automatically resized, if need be. 
Examples
tramo_outliers(rjd3toolkit::ABS$X0.2.09.10.M)
#> $model
#> $model$y
#>         Jan    Feb    Mar    Apr    May    Jun    Jul    Aug    Sep    Oct
#> 1982                       460.1  502.6  443.8  459.1  438.4  465.1  452.7
#> 1983  379.2  378.0  472.1  503.4  510.6  462.4  468.3  458.2  482.7  485.3
#> 1984  414.7  414.5  484.7  487.3  597.9  500.4  543.4  503.4  522.8  556.6
#> 1985  516.3  452.5  525.8  587.7  700.3  561.8  602.8  582.5  563.1  637.1
#> 1986  570.5  478.2  547.4  594.3  751.6  553.4  663.2  581.1  661.9  665.6
#> 1987  613.9  513.2  599.9  674.1  714.0  670.5  720.9  601.6  672.3  709.1
#> 1988  631.0  551.1  678.1  715.7  740.8  722.0  683.5  650.9  723.3  729.6
#> 1989  631.5  552.0  719.0  697.6  764.8  786.3  715.1  723.8  757.9  751.7
#> 1990  678.2  586.2  726.8  744.1  815.5  832.4  710.3  759.4  741.1  786.6
#> 1991  694.0  604.7  719.2  748.2  828.2  746.9  794.5  770.4  741.5  858.6
#> 1992  740.0  665.9  701.5  831.4  878.6  826.0  788.2  723.6  819.8  902.5
#> 1993  762.1  643.0  754.1  840.7  906.6  887.1  771.5  728.7  844.7  886.9
#> 1994  745.7  664.4  821.5  831.7  908.0  912.6  782.9  798.8  887.0  934.6
#> 1995  752.4  682.5  811.2  906.0  927.2  906.8  880.6  873.9  856.8  920.6
#> 1996  833.1  737.1  812.0  895.2  962.8  908.6  908.0  888.9  833.7  933.7
#> 1997  840.9  727.4  857.9  849.0  994.8  830.2  971.1  836.0  939.1  976.9
#> 1998  917.3  716.2  822.9  970.1  970.2  849.4 1042.3  869.9  939.4 1021.3
#> 1999  942.0  738.4  903.2  953.2 1011.2  894.4 1054.5  899.5 1002.3 1043.7
#> 2000  924.9  798.2  901.9 1024.7 1052.3 1165.5  859.3 1009.2 1054.6 1070.4
#> 2001  971.9  814.6 1017.5 1039.2 1123.5 1024.9 1100.8  963.0 1012.9 1132.0
#> 2002 1027.9  841.4 1043.9 1075.3 1190.9 1143.0 1075.7 1065.9 1060.1 1211.4
#> 2003 1099.3  900.5 1092.7 1222.4 1237.1 1237.9 1182.0 1101.2 1198.2 1316.1
#> 2004 1182.9  989.8 1131.4 1277.1 1280.3 1384.1 1305.9 1166.8 1317.9 1358.3
#> 2005 1246.3 1037.3 1300.8 1153.7 1264.2 1454.2 1290.1 1210.7 1277.8 1314.4
#> 2006 1193.7 1037.7 1204.5 1348.6 1267.6 1429.0 1412.0 1239.2 1219.1 1344.6
#> 2007 1267.3 1047.0 1331.6 1302.6 1365.1 1491.5 1462.3 1315.5 1353.3 1440.6
#> 2008 1397.8 1140.5 1351.7 1396.6 1421.1 1401.6 1582.3 1268.4 1383.3 1452.4
#> 2009 1451.0 1056.6 1386.9 1509.1 1519.4 1500.5 1570.7 1341.5 1399.9 1534.3
#> 2010 1469.1 1111.9 1379.9 1389.7 1427.2 1551.4 1581.0 1324.0 1422.0 1464.9
#> 2011 1412.6 1117.5 1321.6 1472.6 1408.9 1471.9 1532.5 1293.5 1345.7 1404.7
#> 2012 1362.4 1131.7 1349.2 1391.2 1456.9 1616.4 1423.4 1359.0 1367.8 1442.6
#> 2013 1397.4 1113.6 1397.3 1339.1 1441.9 1537.4 1390.6 1337.2 1359.4 1463.3
#> 2014 1451.0 1064.9 1293.2 1442.9 1411.8 1461.6 1501.6 1254.2 1356.4 1478.7
#> 2015 1471.2 1053.8 1367.2 1442.2 1428.7 1480.9 1540.9 1331.9 1400.1 1566.3
#> 2016 1519.2 1155.8 1451.5 1451.0 1449.7 1596.1 1468.3 1293.9 1393.5 1497.4
#> 2017 1428.5 1092.4 1370.3 1522.6 1452.4 1557.2 1445.5 1303.1              
#>         Nov    Dec
#> 1982  522.9  889.3
#> 1983  568.7  963.7
#> 1984  623.2 1039.4
#> 1985  697.1 1187.5
#> 1986  700.9 1367.9
#> 1987  743.2 1460.1
#> 1988  870.3 1570.0
#> 1989  923.8 1569.4
#> 1990  931.5 1563.1
#> 1991  944.7 1600.3
#> 1992  968.6 1650.9
#> 1993  970.0 1710.5
#> 1994 1000.4 1817.5
#> 1995 1067.4 1857.2
#> 1996 1081.6 1837.6
#> 1997 1111.3 1879.1
#> 1998 1137.7 1975.7
#> 1999 1207.2 2069.6
#> 2000 1232.5 2177.5
#> 2001 1344.8 2269.5
#> 2002 1495.1 2338.6
#> 2003 1528.2 2424.2
#> 2004 1536.7 2500.8
#> 2005 1540.4 2536.0
#> 2006 1623.3 2611.1
#> 2007 1687.9 2747.0
#> 2008 1675.9 2886.1
#> 2009 1736.6 2795.1
#> 2010 1705.5 2752.4
#> 2011 1660.0 2730.5
#> 2012 1672.9 2753.3
#> 2013 1668.9 2725.5
#> 2014 1687.7 2756.9
#> 2015 1730.5 2913.6
#> 2016 1684.3 2850.4
#> 2017              
#> 
#> $model$variables
#> [1] "AO.220" "AO.219"
#> 
#> $model$X
#>        [,1] [,2]
#>   [1,]    0    0
#>   [2,]    0    0
#>   [3,]    0    0
#>   [4,]    0    0
#>   [5,]    0    0
#>   [6,]    0    0
#>   [7,]    0    0
#>   [8,]    0    0
#>   [9,]    0    0
#>  [10,]    0    0
#>  [11,]    0    0
#>  [12,]    0    0
#>  [13,]    0    0
#>  [14,]    0    0
#>  [15,]    0    0
#>  [16,]    0    0
#>  [17,]    0    0
#>  [18,]    0    0
#>  [19,]    0    0
#>  [20,]    0    0
#>  [21,]    0    0
#>  [22,]    0    0
#>  [23,]    0    0
#>  [24,]    0    0
#>  [25,]    0    0
#>  [26,]    0    0
#>  [27,]    0    0
#>  [28,]    0    0
#>  [29,]    0    0
#>  [30,]    0    0
#>  [31,]    0    0
#>  [32,]    0    0
#>  [33,]    0    0
#>  [34,]    0    0
#>  [35,]    0    0
#>  [36,]    0    0
#>  [37,]    0    0
#>  [38,]    0    0
#>  [39,]    0    0
#>  [40,]    0    0
#>  [41,]    0    0
#>  [42,]    0    0
#>  [43,]    0    0
#>  [44,]    0    0
#>  [45,]    0    0
#>  [46,]    0    0
#>  [47,]    0    0
#>  [48,]    0    0
#>  [49,]    0    0
#>  [50,]    0    0
#>  [51,]    0    0
#>  [52,]    0    0
#>  [53,]    0    0
#>  [54,]    0    0
#>  [55,]    0    0
#>  [56,]    0    0
#>  [57,]    0    0
#>  [58,]    0    0
#>  [59,]    0    0
#>  [60,]    0    0
#>  [61,]    0    0
#>  [62,]    0    0
#>  [63,]    0    0
#>  [64,]    0    0
#>  [65,]    0    0
#>  [66,]    0    0
#>  [67,]    0    0
#>  [68,]    0    0
#>  [69,]    0    0
#>  [70,]    0    0
#>  [71,]    0    0
#>  [72,]    0    0
#>  [73,]    0    0
#>  [74,]    0    0
#>  [75,]    0    0
#>  [76,]    0    0
#>  [77,]    0    0
#>  [78,]    0    0
#>  [79,]    0    0
#>  [80,]    0    0
#>  [81,]    0    0
#>  [82,]    0    0
#>  [83,]    0    0
#>  [84,]    0    0
#>  [85,]    0    0
#>  [86,]    0    0
#>  [87,]    0    0
#>  [88,]    0    0
#>  [89,]    0    0
#>  [90,]    0    0
#>  [91,]    0    0
#>  [92,]    0    0
#>  [93,]    0    0
#>  [94,]    0    0
#>  [95,]    0    0
#>  [96,]    0    0
#>  [97,]    0    0
#>  [98,]    0    0
#>  [99,]    0    0
#> [100,]    0    0
#> [101,]    0    0
#> [102,]    0    0
#> [103,]    0    0
#> [104,]    0    0
#> [105,]    0    0
#> [106,]    0    0
#> [107,]    0    0
#> [108,]    0    0
#> [109,]    0    0
#> [110,]    0    0
#> [111,]    0    0
#> [112,]    0    0
#> [113,]    0    0
#> [114,]    0    0
#> [115,]    0    0
#> [116,]    0    0
#> [117,]    0    0
#> [118,]    0    0
#> [119,]    0    0
#> [120,]    0    0
#> [121,]    0    0
#> [122,]    0    0
#> [123,]    0    0
#> [124,]    0    0
#> [125,]    0    0
#> [126,]    0    0
#> [127,]    0    0
#> [128,]    0    0
#> [129,]    0    0
#> [130,]    0    0
#> [131,]    0    0
#> [132,]    0    0
#> [133,]    0    0
#> [134,]    0    0
#> [135,]    0    0
#> [136,]    0    0
#> [137,]    0    0
#> [138,]    0    0
#> [139,]    0    0
#> [140,]    0    0
#> [141,]    0    0
#> [142,]    0    0
#> [143,]    0    0
#> [144,]    0    0
#> [145,]    0    0
#> [146,]    0    0
#> [147,]    0    0
#> [148,]    0    0
#> [149,]    0    0
#> [150,]    0    0
#> [151,]    0    0
#> [152,]    0    0
#> [153,]    0    0
#> [154,]    0    0
#> [155,]    0    0
#> [156,]    0    0
#> [157,]    0    0
#> [158,]    0    0
#> [159,]    0    0
#> [160,]    0    0
#> [161,]    0    0
#> [162,]    0    0
#> [163,]    0    0
#> [164,]    0    0
#> [165,]    0    0
#> [166,]    0    0
#> [167,]    0    0
#> [168,]    0    0
#> [169,]    0    0
#> [170,]    0    0
#> [171,]    0    0
#> [172,]    0    0
#> [173,]    0    0
#> [174,]    0    0
#> [175,]    0    0
#> [176,]    0    0
#> [177,]    0    0
#> [178,]    0    0
#> [179,]    0    0
#> [180,]    0    0
#> [181,]    0    0
#> [182,]    0    0
#> [183,]    0    0
#> [184,]    0    0
#> [185,]    0    0
#> [186,]    0    0
#> [187,]    0    0
#> [188,]    0    0
#> [189,]    0    0
#> [190,]    0    0
#> [191,]    0    0
#> [192,]    0    0
#> [193,]    0    0
#> [194,]    0    0
#> [195,]    0    0
#> [196,]    0    0
#> [197,]    0    0
#> [198,]    0    0
#> [199,]    0    0
#> [200,]    0    0
#> [201,]    0    0
#> [202,]    0    0
#> [203,]    0    0
#> [204,]    0    0
#> [205,]    0    0
#> [206,]    0    0
#> [207,]    0    0
#> [208,]    0    0
#> [209,]    0    0
#> [210,]    0    0
#> [211,]    0    0
#> [212,]    0    0
#> [213,]    0    0
#> [214,]    0    0
#> [215,]    0    0
#> [216,]    0    0
#> [217,]    0    0
#> [218,]    0    0
#> [219,]    0    1
#> [220,]    1    0
#> [221,]    0    0
#> [222,]    0    0
#> [223,]    0    0
#> [224,]    0    0
#> [225,]    0    0
#> [226,]    0    0
#> [227,]    0    0
#> [228,]    0    0
#> [229,]    0    0
#> [230,]    0    0
#> [231,]    0    0
#> [232,]    0    0
#> [233,]    0    0
#> [234,]    0    0
#> [235,]    0    0
#> [236,]    0    0
#> [237,]    0    0
#> [238,]    0    0
#> [239,]    0    0
#> [240,]    0    0
#> [241,]    0    0
#> [242,]    0    0
#> [243,]    0    0
#> [244,]    0    0
#> [245,]    0    0
#> [246,]    0    0
#> [247,]    0    0
#> [248,]    0    0
#> [249,]    0    0
#> [250,]    0    0
#> [251,]    0    0
#> [252,]    0    0
#> [253,]    0    0
#> [254,]    0    0
#> [255,]    0    0
#> [256,]    0    0
#> [257,]    0    0
#> [258,]    0    0
#> [259,]    0    0
#> [260,]    0    0
#> [261,]    0    0
#> [262,]    0    0
#> [263,]    0    0
#> [264,]    0    0
#> [265,]    0    0
#> [266,]    0    0
#> [267,]    0    0
#> [268,]    0    0
#> [269,]    0    0
#> [270,]    0    0
#> [271,]    0    0
#> [272,]    0    0
#> [273,]    0    0
#> [274,]    0    0
#> [275,]    0    0
#> [276,]    0    0
#> [277,]    0    0
#> [278,]    0    0
#> [279,]    0    0
#> [280,]    0    0
#> [281,]    0    0
#> [282,]    0    0
#> [283,]    0    0
#> [284,]    0    0
#> [285,]    0    0
#> [286,]    0    0
#> [287,]    0    0
#> [288,]    0    0
#> [289,]    0    0
#> [290,]    0    0
#> [291,]    0    0
#> [292,]    0    0
#> [293,]    0    0
#> [294,]    0    0
#> [295,]    0    0
#> [296,]    0    0
#> [297,]    0    0
#> [298,]    0    0
#> [299,]    0    0
#> [300,]    0    0
#> [301,]    0    0
#> [302,]    0    0
#> [303,]    0    0
#> [304,]    0    0
#> [305,]    0    0
#> [306,]    0    0
#> [307,]    0    0
#> [308,]    0    0
#> [309,]    0    0
#> [310,]    0    0
#> [311,]    0    0
#> [312,]    0    0
#> [313,]    0    0
#> [314,]    0    0
#> [315,]    0    0
#> [316,]    0    0
#> [317,]    0    0
#> [318,]    0    0
#> [319,]    0    0
#> [320,]    0    0
#> [321,]    0    0
#> [322,]    0    0
#> [323,]    0    0
#> [324,]    0    0
#> [325,]    0    0
#> [326,]    0    0
#> [327,]    0    0
#> [328,]    0    0
#> [329,]    0    0
#> [330,]    0    0
#> [331,]    0    0
#> [332,]    0    0
#> [333,]    0    0
#> [334,]    0    0
#> [335,]    0    0
#> [336,]    0    0
#> [337,]    0    0
#> [338,]    0    0
#> [339,]    0    0
#> [340,]    0    0
#> [341,]    0    0
#> [342,]    0    0
#> [343,]    0    0
#> [344,]    0    0
#> [345,]    0    0
#> [346,]    0    0
#> [347,]    0    0
#> [348,]    0    0
#> [349,]    0    0
#> [350,]    0    0
#> [351,]    0    0
#> [352,]    0    0
#> [353,]    0    0
#> [354,]    0    0
#> [355,]    0    0
#> [356,]    0    0
#> [357,]    0    0
#> [358,]    0    0
#> [359,]    0    0
#> [360,]    0    0
#> [361,]    0    0
#> [362,]    0    0
#> [363,]    0    0
#> [364,]    0    0
#> [365,]    0    0
#> [366,]    0    0
#> [367,]    0    0
#> [368,]    0    0
#> [369,]    0    0
#> [370,]    0    0
#> [371,]    0    0
#> [372,]    0    0
#> [373,]    0    0
#> [374,]    0    0
#> [375,]    0    0
#> [376,]    0    0
#> [377,]    0    0
#> [378,]    0    0
#> [379,]    0    0
#> [380,]    0    0
#> [381,]    0    0
#> [382,]    0    0
#> [383,]    0    0
#> [384,]    0    0
#> [385,]    0    0
#> [386,]    0    0
#> [387,]    0    0
#> [388,]    0    0
#> [389,]    0    0
#> [390,]    0    0
#> [391,]    0    0
#> [392,]    0    0
#> [393,]    0    0
#> [394,]    0    0
#> [395,]    0    0
#> [396,]    0    0
#> [397,]    0    0
#> [398,]    0    0
#> [399,]    0    0
#> [400,]    0    0
#> [401,]    0    0
#> [402,]    0    0
#> [403,]    0    0
#> [404,]    0    0
#> [405,]    0    0
#> [406,]    0    0
#> [407,]    0    0
#> [408,]    0    0
#> [409,]    0    0
#> [410,]    0    0
#> [411,]    0    0
#> [412,]    0    0
#> [413,]    0    0
#> [414,]    0    0
#> [415,]    0    0
#> [416,]    0    0
#> [417,]    0    0
#> [418,]    0    0
#> [419,]    0    0
#> [420,]    0    0
#> [421,]    0    0
#> [422,]    0    0
#> [423,]    0    0
#> [424,]    0    0
#> [425,]    0    0
#> 
#> $model$b
#> [1] -211.0035  189.6218
#> 
#> $model$bcov
#>           [,1]      [,2]
#> [1,] 1516.9191  124.4537
#> [2,]  124.4537 1516.9191
#> 
#> $model$linearized
#>   [1]  460.1000  502.6000  443.8000  459.1000  438.4000  465.1000  452.7000
#>   [8]  522.9000  889.3000  379.2000  378.0000  472.1000  503.4000  510.6000
#>  [15]  462.4000  468.3000  458.2000  482.7000  485.3000  568.7000  963.7000
#>  [22]  414.7000  414.5000  484.7000  487.3000  597.9000  500.4000  543.4000
#>  [29]  503.4000  522.8000  556.6000  623.2000 1039.4000  516.3000  452.5000
#>  [36]  525.8000  587.7000  700.3000  561.8000  602.8000  582.5000  563.1000
#>  [43]  637.1000  697.1000 1187.5000  570.5000  478.2000  547.4000  594.3000
#>  [50]  751.6000  553.4000  663.2000  581.1000  661.9000  665.6000  700.9000
#>  [57] 1367.9000  613.9000  513.2000  599.9000  674.1000  714.0000  670.5000
#>  [64]  720.9000  601.6000  672.3000  709.1000  743.2000 1460.1000  631.0000
#>  [71]  551.1000  678.1000  715.7000  740.8000  722.0000  683.5000  650.9000
#>  [78]  723.3000  729.6000  870.3000 1570.0000  631.5000  552.0000  719.0000
#>  [85]  697.6000  764.8000  786.3000  715.1000  723.8000  757.9000  751.7000
#>  [92]  923.8000 1569.4000  678.2000  586.2000  726.8000  744.1000  815.5000
#>  [99]  832.4000  710.3000  759.4000  741.1000  786.6000  931.5000 1563.1000
#> [106]  694.0000  604.7000  719.2000  748.2000  828.2000  746.9000  794.5000
#> [113]  770.4000  741.5000  858.6000  944.7000 1600.3000  740.0000  665.9000
#> [120]  701.5000  831.4000  878.6000  826.0000  788.2000  723.6000  819.8000
#> [127]  902.5000  968.6000 1650.9000  762.1000  643.0000  754.1000  840.7000
#> [134]  906.6000  887.1000  771.5000  728.7000  844.7000  886.9000  970.0000
#> [141] 1710.5000  745.7000  664.4000  821.5000  831.7000  908.0000  912.6000
#> [148]  782.9000  798.8000  887.0000  934.6000 1000.4000 1817.5000  752.4000
#> [155]  682.5000  811.2000  906.0000  927.2000  906.8000  880.6000  873.9000
#> [162]  856.8000  920.6000 1067.4000 1857.2000  833.1000  737.1000  812.0000
#> [169]  895.2000  962.8000  908.6000  908.0000  888.9000  833.7000  933.7000
#> [176] 1081.6000 1837.6000  840.9000  727.4000  857.9000  849.0000  994.8000
#> [183]  830.2000  971.1000  836.0000  939.1000  976.9000 1111.3000 1879.1000
#> [190]  917.3000  716.2000  822.9000  970.1000  970.2000  849.4000 1042.3000
#> [197]  869.9000  939.4000 1021.3000 1137.7000 1975.7000  942.0000  738.4000
#> [204]  903.2000  953.2000 1011.2000  894.4000 1054.5000  899.5000 1002.3000
#> [211] 1043.7000 1207.2000 2069.6000  924.9000  798.2000  901.9000 1024.7000
#> [218] 1052.3000  975.8782 1070.3035 1009.2000 1054.6000 1070.4000 1232.5000
#> [225] 2177.5000  971.9000  814.6000 1017.5000 1039.2000 1123.5000 1024.9000
#> [232] 1100.8000  963.0000 1012.9000 1132.0000 1344.8000 2269.5000 1027.9000
#> [239]  841.4000 1043.9000 1075.3000 1190.9000 1143.0000 1075.7000 1065.9000
#> [246] 1060.1000 1211.4000 1495.1000 2338.6000 1099.3000  900.5000 1092.7000
#> [253] 1222.4000 1237.1000 1237.9000 1182.0000 1101.2000 1198.2000 1316.1000
#> [260] 1528.2000 2424.2000 1182.9000  989.8000 1131.4000 1277.1000 1280.3000
#> [267] 1384.1000 1305.9000 1166.8000 1317.9000 1358.3000 1536.7000 2500.8000
#> [274] 1246.3000 1037.3000 1300.8000 1153.7000 1264.2000 1454.2000 1290.1000
#> [281] 1210.7000 1277.8000 1314.4000 1540.4000 2536.0000 1193.7000 1037.7000
#> [288] 1204.5000 1348.6000 1267.6000 1429.0000 1412.0000 1239.2000 1219.1000
#> [295] 1344.6000 1623.3000 2611.1000 1267.3000 1047.0000 1331.6000 1302.6000
#> [302] 1365.1000 1491.5000 1462.3000 1315.5000 1353.3000 1440.6000 1687.9000
#> [309] 2747.0000 1397.8000 1140.5000 1351.7000 1396.6000 1421.1000 1401.6000
#> [316] 1582.3000 1268.4000 1383.3000 1452.4000 1675.9000 2886.1000 1451.0000
#> [323] 1056.6000 1386.9000 1509.1000 1519.4000 1500.5000 1570.7000 1341.5000
#> [330] 1399.9000 1534.3000 1736.6000 2795.1000 1469.1000 1111.9000 1379.9000
#> [337] 1389.7000 1427.2000 1551.4000 1581.0000 1324.0000 1422.0000 1464.9000
#> [344] 1705.5000 2752.4000 1412.6000 1117.5000 1321.6000 1472.6000 1408.9000
#> [351] 1471.9000 1532.5000 1293.5000 1345.7000 1404.7000 1660.0000 2730.5000
#> [358] 1362.4000 1131.7000 1349.2000 1391.2000 1456.9000 1616.4000 1423.4000
#> [365] 1359.0000 1367.8000 1442.6000 1672.9000 2753.3000 1397.4000 1113.6000
#> [372] 1397.3000 1339.1000 1441.9000 1537.4000 1390.6000 1337.2000 1359.4000
#> [379] 1463.3000 1668.9000 2725.5000 1451.0000 1064.9000 1293.2000 1442.9000
#> [386] 1411.8000 1461.6000 1501.6000 1254.2000 1356.4000 1478.7000 1687.7000
#> [393] 2756.9000 1471.2000 1053.8000 1367.2000 1442.2000 1428.7000 1480.9000
#> [400] 1540.9000 1331.9000 1400.1000 1566.3000 1730.5000 2913.6000 1519.2000
#> [407] 1155.8000 1451.5000 1451.0000 1449.7000 1596.1000 1468.3000 1293.9000
#> [414] 1393.5000 1497.4000 1684.3000 2850.4000 1428.5000 1092.4000 1370.3000
#> [421] 1522.6000 1452.4000 1557.2000 1445.5000 1303.1000
#> 
#> 
#> $likelihood
#> $likelihood$initial
#> $likelihood$initial$ll
#> [1] -2218.964
#> 
#> $likelihood$initial$ssq
#> [1] 1139531
#> 
#> $likelihood$initial$nobs
#> [1] 425
#> 
#> $likelihood$initial$neffective
#> [1] -1
#> 
#> $likelihood$initial$nparams
#> [1] 3
#> 
#> $likelihood$initial$df
#> [1] 409
#> 
#> $likelihood$initial$aic
#> [1] 4443.928
#> 
#> $likelihood$initial$aicc
#> [1] 4443.987
#> 
#> $likelihood$initial$bic
#> [1] 4455.991
#> 
#> $likelihood$initial$bic2
#> [1] 10.81551
#> 
#> $likelihood$initial$bicc
#> [1] 7.954332
#> 
#> $likelihood$initial$hannanquinn
#> [1] 4448.7
#> 
#> 
#> $likelihood$final
#> $likelihood$final$ll
#> [1] -2194.499
#> 
#> $likelihood$final$ssq
#> [1] 1014171
#> 
#> $likelihood$final$nobs
#> [1] 425
#> 
#> $likelihood$final$neffective
#> [1] -1
#> 
#> $likelihood$final$nparams
#> [1] 3
#> 
#> $likelihood$final$df
#> [1] 409
#> 
#> $likelihood$final$aic
#> [1] 4394.998
#> 
#> $likelihood$final$aicc
#> [1] 4395.057
#> 
#> $likelihood$final$bic
#> [1] 4407.061
#> 
#> $likelihood$final$bic2
#> [1] 10.69675
#> 
#> $likelihood$final$bicc
#> [1] 7.837787
#> 
#> $likelihood$final$hannanquinn
#> [1] 4399.77
#> 
#> 
#> 
#> attr(,"class")
#> [1] "JD3_REGARIMA_OUTLIERS"