RegARIMA model, pre-adjustment in X13 and TRAMO-SEATS
Source:R/jregarima.R
, R/regarima.R
regarima.Rd
The regarima/regarima_x13/regarima_tramoseats
functions remove deterministic effects from the input series (e.g.calendar effects, outliers)
using a multivariate regression model with arima errors.
The jregarima/jregarima_x13/jregarima_tramoseats
functions do the same computation but return the Java objects instead of
a formatted output.
Usage
jregarima(series, spec = NA)
jregarima_tramoseats(
series,
spec = c("TRfull", "TR0", "TR1", "TR2", "TR3", "TR4", "TR5")
)
jregarima_x13(series, spec = c("RG5c", "RG0", "RG1", "RG2c", "RG3", "RG4c"))
regarima(series, spec = NA)
regarima_tramoseats(
series,
spec = c("TRfull", "TR0", "TR1", "TR2", "TR3", "TR4", "TR5")
)
regarima_x13(series, spec = c("RG5c", "RG0", "RG1", "RG2c", "RG3", "RG4c"))
Arguments
- series
an univariate time series
- spec
the model specification. For the function:
regarima
: an object of classc("regarima_spec","X13") or c("regarima_spec","TRAMO_SEATS")
. See the functionsregarima_spec_x13 and regarima_spec_tramoseats
.regarima_x13
: the name of a predefined X13 'JDemetra+' model specification (see Details). The default value is "RG5c".regarima_tramoseats
:the name of a predefined TRAMO-SEATS 'JDemetra+' model specification (see Details). The default value is "TRfull".
Value
The jregarima/jregarima_x13/jregarima_tramoseats
functions return a jSA
object
that contains the result of the pre-adjustment method without any formatting. Therefore, the computation
is faster than with the regarima/regarima_x13/regarima_tramoseats
functions.
The results of the seasonal adjustment can be extracted with the function get_indicators
.
The regarima/regarima_x13/regarima_tramoseats
functions return an object of class "regarima"
and sub-class "X13"
or "TRAMO_SEATS"
.
regarima_x13
returns an object of class c("regarima","X13")
and regarima_tramoseats
,
an object of class c("regarima","TRAMO_SEATS")
.
For the function regarima
, the sub-class of the object depends on the used method that is defined by
the spec
object class.
An object of class "regarima"
is a list containing the following components:
- specification
a list with the model specification as defined by the
spec
argument. See also the Value of theregarima_spec_x13
andregarima_spec_tramoseats
functions.- arma
a vector containing the orders of the autoregressive (AR), moving average (MA), seasonal AR and seasonal MA processes, as well as the regular and seasonal differencing orders (P,D,Q) (BP,BD,BQ).
- arima.coefficients
a matrix containing the estimated regular and seasonal AR and MA coefficients, as well as the associated standard errors and t-statistics values. The estimated coefficients can be also extracted with the function
coef
(whose output also includes the regression coefficients).- regression.coefficients
a matrix containing the estimated regression variables (i.e.: mean, calendar effect, outliers and user-defined regressors) coefficients, as well as the associated standard errors and t-statistics values. The estimated coefficients can be also extracted with the function
coef
(whose output also includes the arima coefficients).- loglik
a matrix containing the log-likelihood of the RegARIMA model as well as the associated model selection criteria statistics (AIC, AICC, BIC and BICC) and parameters (
np
= number of parameters in the likelihood,neffectiveobs
= number of effective observations in the likelihood). These statistics can also be extracted with the functionlogLik
.- model
a list containing information on the model specification after its estimation (
spec_rslt
), as well as the decomposed elements of the input series (ts matrix,effects
). The model specification includes information on the estimation method (Model
) and time span (T.span
), whether the original series was log transformed (Log transformation
) and details on the regression part of the RegARIMA model i.e. if it includes aMean
,Trading days
effects (if so, it provides the number of regressors),Leap year
effect,Easter
effect and whether outliers were detected (Outliers
(if so, it provides the number of outliers). The decomposed elements of the input series contain the linearised series (y_lin
) and the deterministic components i.e.: trading days effect (tde
), Easter effect (ee
), other moving holidays effect (omhe
) and outliers effect (total -out
, related to irregular -out_i
, related to trend -out_t
, related to seasonal -out_s
).- residuals
the residuals (time series). They can be also extracted with the function
residuals
.- residuals.stat
a list containing statistics on the RegARIMA residuals. It provides the residuals standard error (
st.error
) and the results of normality, independence and linearity of the residuals (tests
) - object of classc("regarima_rtests","data.frame")
.- forecast
a ts matrix containing the forecast of the original series (
fcst
) and its standard error (fcsterr
).
Details
When seasonally adjusting with X13 and TRAMO-SEATS, the first step consists in pre-adjusting the original series with a RegARIMA model, where the original series is corrected for any deterministic effects and missing observations. This step is also referred to as the linearization of the original series.
The RegARIMA model (model with ARIMA errors) is specified as such:
$$z_t = y_t\beta + x_t$$
where:
\(z_t\) is the original series;
\(\beta = (\beta_1,...,\beta_n)\) is a vector of regression coefficients;
\(y_t = (y_{1t},...,y_{nt})\) are \(n\) regression variables (outliers, calendar effects, user-defined variables);
\(x_t\) is a disturbance that follows the general ARIMA process: \(\phi(B)\delta(B)x_t = \theta(B)a_t\); where \(\phi(B), \delta(B)\) and \(\theta(B)\) are finite polynomials in \(B\) and \(a_t\) is a white noise variable with zero mean and a constant variance.
The polynomial \(\phi(B)\) is a stationary autoregressive (AR) polynomial in \(B\), which is a product of the stationary regular AR polynomial in \(B\) and the stationary seasonal polynomial in \(B^s\):
$$\phi(B)=\phi_p(B)\Phi_{bp}(B^s)=(1+\phi_1B+...+\phi_pB^p)(1+\Phi_1B^s+...+\Phi_{bp}B^{bps})$$
where:
\(p\) is the number of regular AR terms (here and in 'JDemetra+', \(p \le 3\));
\(bp\) is the number of seasonal AR terms (here and in 'JDemetra+', \(bp \le 1\));
\(s\) is the number of observations per year (ie. The time series frequency).
The polynomial \(\theta(B)\) is an invertible moving average (MA) polynomial in \(B\), which is a product of the invertible regular MA polynomial in \(B\) and the invertible seasonal MA polynomial in \(B^s\):
$$\theta(B)=\theta_q(B)\Theta_{bq}(B^s)=(1+\theta_1B+...+\theta_qB^q)(1+\Theta_1B^s+...+\Theta_{bq}B^{bqs})$$
where:
\(q\) is the number of regular MA terms (here and in 'JDemetra+', \(q \le 3\));
\(bq\) is the number of seasonal MA terms (here and in 'JDemetra+', \(bq \le 1\)).
The polynomial \(\delta(B)\) is the non-stationary AR polynomial in \(B\) (unit roots):
$$\delta(B) = (1-B)^d(1-B^s)^{d_s}$$
where:
\(d\) is the regular differencing order (here and in 'JDemetra+', \(d \le 1\));
\(d_s\) is the seasonal differencing order (here and in 'JDemetra+', \(d_s \le 1\)).
NB. The notations used for AR and MA processes, as well as the model denoted as ARIMA \((P,D,Q)(BP,BD,BQ)\), are consistent with those in 'JDemetra+'.
The available predefined 'JDemetra+' X13 and TRAMO-SEATS model specifications are described in the tables below:
X13:
Identifier | | Log/level detection | | Outliers detection | | Calendar effects | | ARIMA | RG0 | | NA | |
NA | | NA | | Airline(+mean) | RG1 | | automatic | | AO/LS/TC | | NA | |
Airline(+mean) | RG2c | | automatic | | AO/LS/TC | | 2 td vars + Easter | | Airline(+mean) | RG3 | |
automatic | | AO/LS/TC | | NA | | automatic | RG4c | | automatic | | AO/LS/TC | |
2 td vars + Easter | | automatic | RG5c | | automatic | | AO/LS/TC | | 7 td vars + Easter | | automatic |
TRAMO-SEATS:
Identifier | | Log/level detection | | Outliers detection | | Calendar effects | | ARIMA | TR0 | | NA | | NA | |
NA | | Airline(+mean) | TR1 | | automatic | | AO/LS/TC | | NA | | Airline(+mean) | TR2 | |
automatic | | AO/LS/TC | | 2 td vars + Easter | | Airline(+mean) | TR3 | | automatic | | AO/LS/TC | | NA | |
automatic | TR4 | | automatic | | AO/LS/TC | | 2 td vars + Easter | | automatic | TR5 | | automatic | |
AO/LS/TC | | 7 td vars + Easter | | automatic | TRfull | | automatic | | AO/LS/TC | | automatic | | automatic |
References
More information and examples related to 'JDemetra+' features in the online documentation: https://jdemetra-new-documentation.netlify.app/
BOX G.E.P. and JENKINS G.M. (1970), "Time Series Analysis: Forecasting and Control", Holden-Day, San Francisco.
BOX G.E.P., JENKINS G.M., REINSEL G.C. and LJUNG G.M. (2015), "Time Series Analysis: Forecasting and Control", John Wiley & Sons, Hoboken, N. J., 5th edition.
Examples
# \donttest{
# X13 method
myseries <- ipi_c_eu[, "FR"]
myreg <- regarima_x13(myseries, spec ="RG5c")
summary(myreg)
#> y = regression model + arima (2, 1, 1, 0, 1, 1)
#>
#> Model: RegARIMA - X13
#> Estimation span: from 1-1990 to 12-2020
#> Log-transformation: no
#> Regression model: no mean, trading days effect(7), leap year effect, Easter effect, outliers(4)
#>
#> Coefficients:
#> ARIMA:
#> Estimate Std. Error T-stat Pr(>|t|)
#> Phi(1) 0.0003269 0.1077296 0.003 0.9976
#> Phi(2) 0.1688192 0.0740996 2.278 0.0233 *
#> Theta(1) -0.5485606 0.1016550 -5.396 1.24e-07 ***
#> BTheta(1) -0.6660849 0.0422242 -15.775 < 2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Regression model:
#> Estimate Std. Error T-stat Pr(>|t|)
#> Monday 0.55932 0.22801 2.453 0.014638 *
#> Tuesday 0.88221 0.22832 3.864 0.000132 ***
#> Wednesday 1.03996 0.22930 4.535 7.85e-06 ***
#> Thursday 0.04943 0.22944 0.215 0.829549
#> Friday 0.91132 0.22988 3.964 8.88e-05 ***
#> Saturday -1.57769 0.22775 -6.927 1.99e-11 ***
#> Leap year 2.15403 0.70527 3.054 0.002425 **
#> Easter [1] -2.37950 0.45391 -5.242 2.71e-07 ***
#> TC (4-2020) -35.59245 2.17330 -16.377 < 2e-16 ***
#> AO (3-2020) -20.89026 2.18013 -9.582 < 2e-16 ***
#> AO (5-2011) 13.49850 1.85694 7.269 2.28e-12 ***
#> LS (11-2008) -12.54901 1.63554 -7.673 1.60e-13 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#>
#> Residual standard error: 2.218 on 342 degrees of freedom
#> Log likelihood = -799.1, aic = 1632, aicc = 1634, bic(corrected for length) = 1.855
#>
plot(myreg)
myspec1 <- regarima_spec_x13(myreg, tradingdays.option = "WorkingDays")
myreg1 <- regarima(myseries, myspec1)
myspec2 <- regarima_spec_x13(myreg, usrdef.outliersEnabled = TRUE,
usrdef.outliersType = c("LS", "AO"),
usrdef.outliersDate = c("2008-10-01", "2002-01-01"),
usrdef.outliersCoef = c(36, 14),
transform.function = "None")
myreg2 <- regarima(myseries, myspec2)
myreg2
#> y = regression model + arima (2, 1, 1, 0, 1, 1)
#> Log-transformation: no
#> Coefficients:
#> Estimate Std. Error
#> Phi(1) 0.07859 0.114
#> Phi(2) 0.19792 0.076
#> Theta(1) -0.48272 0.111
#> BTheta(1) -0.65916 0.043
#>
#> Estimate Std. Error
#> Monday 0.64094 0.228
#> Tuesday 0.81794 0.229
#> Wednesday 1.05374 0.229
#> Thursday 0.06981 0.228
#> Friday 0.93434 0.228
#> Saturday -1.63686 0.226
#> Leap year 2.11550 0.697
#> Easter [1] -2.38135 0.451
#> AO (9-2008) 31.95554 2.924
#> LS (9-2008) -57.04093 2.657
#> TC (4-2020) -35.62104 2.120
#> AO (3-2020) -21.00931 2.145
#> AO (5-2011) 13.21877 1.832
#> TC (9-2008) 23.44654 4.001
#> TC (12-2001) -20.47521 2.922
#> AO (12-2001) 17.13461 2.962
#> TC (2-2002) 10.61731 1.937
#>
#> Fixed outliers:
#> Coefficients
#> LS (10-2008) 36
#> AO (1-2002) 14
#>
#>
#> Residual standard error: 2.178 on 337 degrees of freedom
#> Log likelihood = -792.6, aic = 1629 aicc = 1632, bic(corrected for length) = 1.901
#>
myspec3 <- regarima_spec_x13(myreg, automdl.enabled = FALSE,
arima.p = 1, arima.q = 1,
arima.bp = 0, arima.bq = 1,
arima.coefEnabled = TRUE,
arima.coef = c(-0.8, -0.6, 0),
arima.coefType = c(rep("Fixed", 2), "Undefined"))
s_arimaCoef(myspec3)
#> Type Value
#> Phi(1) Fixed -0.8
#> Theta(1) Fixed -0.6
#> BTheta(1) Undefined 0.0
myreg3 <- regarima(myseries, myspec3)
summary(myreg3)
#> y = regression model + arima (1, 1, 1, 0, 1, 1)
#>
#> Model: RegARIMA - X13
#> Estimation span: from 1-1990 to 12-2020
#> Log-transformation: yes
#> Regression model: no mean, trading days effect(6), no leap year effect, Easter effect, outliers(3)
#>
#> Coefficients:
#> ARIMA:
#> Estimate Std. Error T-stat Pr(>|t|)
#> Phi(1) -0.8000 0.0000 NA NA
#> Theta(1) -0.6000 0.0000 NA NA
#> BTheta(1) -0.6977 0.0399 -17.49 <2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Regression model:
#> Estimate Std. Error T-stat Pr(>|t|)
#> Monday 0.006317 0.001791 3.526 0.000476 ***
#> Tuesday 0.007824 0.001793 4.363 1.68e-05 ***
#> Wednesday 0.010528 0.001802 5.841 1.16e-08 ***
#> Thursday 0.001857 0.001811 1.025 0.306022
#> Friday 0.010099 0.001812 5.574 4.90e-08 ***
#> Saturday -0.018439 0.001781 -10.354 < 2e-16 ***
#> Easter [1] -0.020593 0.003515 -5.859 1.06e-08 ***
#> TC (4-2020) -0.475720 0.031229 -15.233 < 2e-16 ***
#> AO (3-2020) -0.213355 0.023246 -9.178 < 2e-16 ***
#> AO (5-2011) 0.143705 0.015529 9.254 < 2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#>
#> Residual standard error: 0.0256 on 347 degrees of freedom
#> Log likelihood = 802.3, aic = 1733, aicc = 1734, bic(corrected for length) = -7.15
#>
plot(myreg3)
# TRAMO-SEATS method
myspec <- regarima_spec_tramoseats("TRfull")
myreg <- regarima(myseries, myspec)
myreg
#> y = regression model + arima (2, 1, 0, 0, 1, 1)
#> Log-transformation: no
#> Coefficients:
#> Estimate Std. Error
#> Phi(1) 0.4032 0.051
#> Phi(2) 0.2883 0.051
#> BTheta(1) -0.6641 0.042
#>
#> Estimate Std. Error
#> Week days 0.6994 0.032
#> Leap year 2.3231 0.690
#> Easter [6] -2.5154 0.436
#> AO (5-2011) 13.4679 1.787
#> TC (4-2020) -22.2128 2.205
#> TC (3-2020) -21.0391 2.217
#> AO (5-2000) 6.7386 1.794
#>
#>
#> Residual standard error: 2.326 on 348 degrees of freedom
#> Log likelihood = -816.1, aic = 1654 aicc = 1655, bic(corrected for length) = 1.852
#>
myspec2 <- regarima_spec_tramoseats(myspec, tradingdays.mauto = "Unused",
tradingdays.option = "WorkingDays",
easter.type = "Standard",
automdl.enabled = FALSE, arima.mu = TRUE)
myreg2 <- regarima(myseries, myspec2)
var1 <- ts(rnorm(length(myseries))*10, start = start(myseries), frequency = 12)
var2 <- ts(rnorm(length(myseries))*100, start = start(myseries), frequency = 12)
var <- ts.union(var1, var2)
myspec3 <- regarima_spec_tramoseats(myspec,
usrdef.varEnabled = TRUE, usrdef.var = var)
s_preVar(myspec3)
#> $series
#> var1 var2
#> Jan 1990 -14.00043517 -96.0449159
#> Feb 1990 2.55317055 -97.5423042
#> Mar 1990 -24.37263611 -33.8576503
#> Apr 1990 -0.05571287 115.2347074
#> May 1990 6.21552721 40.5101183
#> Jun 1990 11.48411606 -47.0922497
#> Jul 1990 -18.21817661 -13.3251019
#> Aug 1990 -2.47325302 122.6682356
#> Sep 1990 -2.44199607 33.2943995
#> Oct 1990 -2.82705449 -34.7088466
#> Nov 1990 -5.53699384 -9.8550690
#> Dec 1990 6.28982042 3.4766060
#> Jan 1991 20.65024895 38.6127022
#> Feb 1991 -16.30989402 2.0831228
#> Mar 1991 5.12426950 0.7586777
#> Apr 1991 -18.63011492 93.0844030
#> May 1991 -5.22012515 -68.4749941
#> Jun 1991 -0.52601910 33.7401513
#> Jul 1991 5.42996343 -41.2137704
#> Aug 1991 -9.14074827 93.4261130
#> Sep 1991 4.68154420 184.0316741
#> Oct 1991 3.62951256 -70.4819663
#> Nov 1991 -13.04543545 0.8510312
#> Dec 1991 7.37776321 203.4189886
#> Jan 1992 18.88504929 -134.1686068
#> Feb 1992 -0.97445104 115.8979182
#> Mar 1992 -9.35847354 -20.3208958
#> Apr 1992 -0.15950311 -37.8028555
#> May 1992 -8.26788954 173.6111043
#> Jun 1992 -15.12399651 -84.5247816
#> Jul 1992 9.35363190 -96.1571493
#> Aug 1992 1.76488611 101.7491053
#> Sep 1992 2.43685465 -149.6053742
#> Oct 1992 16.23548883 -118.4818730
#> Nov 1992 1.12038083 63.0234373
#> Dec 1992 -1.33997013 210.1252514
#> Jan 1993 -19.10087468 -61.3736810
#> Feb 1993 -2.79237242 -163.4638272
#> Mar 1993 -3.13445978 -1.0441117
#> Apr 1993 10.67307879 -65.6506139
#> May 1993 0.70034850 -66.9533441
#> Jun 1993 -6.39123324 -47.8589028
#> Jul 1993 -0.49964899 131.9456316
#> Aug 1993 -2.51483443 63.6562761
#> Sep 1993 4.44797116 51.4327782
#> Oct 1993 27.55417575 -175.1375113
#> Nov 1993 0.46531380 89.3597518
#> Dec 1993 5.77709069 22.3038372
#> Jan 1994 1.18194874 58.0816593
#> Feb 1994 -19.11720491 -17.7821421
#> Mar 1994 8.62086482 74.0966708
#> Apr 1994 -2.43236740 -99.7443079
#> May 1994 -2.06087195 -293.8977561
#> Jun 1994 0.19177592 71.9015661
#> Jul 1994 0.29560754 -69.8005041
#> Aug 1994 5.49827542 -189.4125843
#> Sep 1994 -22.74114857 7.6299249
#> Oct 1994 26.82557184 87.5308501
#> Nov 1994 -3.61221255 45.3827393
#> Dec 1994 2.13355750 -85.0716906
#> Jan 1995 10.74345882 56.6201613
#> Feb 1995 -6.65088249 115.2211954
#> Mar 1995 11.13952419 -75.6197377
#> Apr 1995 -2.45896412 -48.9258334
#> May 1995 -11.77563309 -116.6052337
#> Jun 1995 -9.75850616 -47.9668950
#> Jul 1995 10.65057320 11.5348218
#> Aug 1995 1.31670635 -176.8048407
#> Sep 1995 4.88628809 -140.7638919
#> Oct 1995 -16.99450568 70.9178461
#> Nov 1995 -14.70736306 -124.0842940
#> Dec 1995 2.84150344 -36.8327348
#> Jan 1996 13.37320413 46.2080093
#> Feb 1996 2.36696283 -32.2833101
#> Mar 1996 13.18293384 -128.7214810
#> Apr 1996 5.23909788 -103.0040247
#> May 1996 6.06748047 151.4089316
#> Jun 1996 -1.09935672 34.6903586
#> Jul 1996 1.72181715 177.9441542
#> Aug 1996 -0.90327287 38.6630924
#> Sep 1996 19.24343341 -91.8695239
#> Oct 1996 12.98392759 -158.4336488
#> Nov 1996 7.48791268 -8.4058892
#> Dec 1996 5.56224329 -208.5070889
#> Jan 1997 -5.48257264 0.3567992
#> Feb 1997 11.10534893 -35.5770822
#> Mar 1997 -26.12334333 114.6359751
#> Apr 1997 -1.55693776 -22.1188446
#> May 1997 4.33889790 101.8179021
#> Jun 1997 -3.81951112 -26.3719295
#> Jul 1997 4.24187575 165.8542305
#> Aug 1997 10.63101996 -77.4086771
#> Sep 1997 10.48712620 -92.3937880
#> Oct 1997 -0.38102895 -27.5533378
#> Nov 1997 4.86148920 -59.3399688
#> Dec 1997 16.72882611 -12.2285891
#> Jan 1998 -3.54361164 117.9784246
#> Feb 1998 9.46347886 64.1037374
#> Mar 1998 13.16826356 -62.9588508
#> Apr 1998 -2.96640025 -80.7734971
#> May 1998 -3.87213575 -86.0489929
#> Jun 1998 -7.85432656 -216.9238693
#> Jul 1998 -10.56736867 -137.5836518
#> Aug 1998 -7.95541430 -49.3132472
#> Sep 1998 -17.56275428 -58.1652027
#> Oct 1998 -6.90537897 -16.7229304
#> Nov 1998 -5.58541994 48.5993129
#> Dec 1998 -5.36663326 -133.3395796
#> Jan 1999 2.27127133 -26.1965625
#> Feb 1999 9.78454920 65.2386303
#> Mar 1999 -2.08882651 74.8854971
#> Apr 1999 -13.99410460 89.6560285
#> May 1999 2.58537288 148.9300424
#> Jun 1999 -4.41799453 -65.9403481
#> Jul 1999 5.68599861 53.7283179
#> Aug 1999 21.26850459 74.6803067
#> Sep 1999 4.24858441 189.6317084
#> Oct 1999 -16.84281532 -206.0070725
#> Nov 1999 2.49401784 6.4543870
#> Dec 1999 10.72838252 -26.5147403
#> Jan 2000 20.39369263 -44.7344531
#> Feb 2000 4.49453778 -141.0700927
#> Mar 2000 13.91814046 -50.6418882
#> Apr 2000 4.26566547 -26.9761838
#> May 2000 1.07583992 -108.5154918
#> Jun 2000 0.22294733 36.2159127
#> Jul 2000 6.03611011 -33.5672143
#> Aug 2000 -2.62650573 136.3804498
#> Sep 2000 -5.28264082 -71.1524136
#> Oct 2000 1.92149422 66.2178797
#> Nov 2000 -11.46199669 29.1130223
#> Dec 2000 8.46184665 19.7958000
#> Jan 2001 0.81719629 -120.3566106
#> Feb 2001 -13.05117010 -3.9817044
#> Mar 2001 -9.44912060 68.6982465
#> Apr 2001 4.54341594 70.5267007
#> May 2001 -8.55202501 99.1441680
#> Jun 2001 -2.86895219 114.4248971
#> Jul 2001 8.94961626 -123.8910243
#> Aug 2001 0.67304440 265.4898333
#> Sep 2001 -1.62676337 -15.6917189
#> Oct 2001 -8.27310169 -42.3490117
#> Nov 2001 18.76505621 -19.8387058
#> Dec 2001 7.66440199 -89.4802407
#> Jan 2002 9.79956696 90.4269119
#> Feb 2002 13.21780992 7.9649210
#> Mar 2002 -11.19710829 -125.8827223
#> Apr 2002 5.14599819 102.5685106
#> May 2002 -15.09099836 -73.0778603
#> Jun 2002 15.32741480 -19.0145507
#> Jul 2002 4.29147371 52.8864693
#> Aug 2002 1.22103414 55.0210535
#> Sep 2002 -11.38012401 54.9684337
#> Oct 2002 -5.58015129 -65.9542372
#> Nov 2002 10.52538537 5.7421706
#> Dec 2002 6.77683644 -280.8010508
#> Jan 2003 0.38499547 -91.2259753
#> Feb 2003 -3.56381187 -78.2379163
#> Mar 2003 7.82844102 -66.4104924
#> Apr 2003 8.04411616 62.6309770
#> May 2003 -19.00060823 -50.7248206
#> Jun 2003 9.35784286 27.0361335
#> Jul 2003 -3.09051503 46.7476865
#> Aug 2003 2.63066677 72.3994958
#> Sep 2003 -17.90591856 61.3836939
#> Oct 2003 -7.88258845 -61.7869202
#> Nov 2003 -11.33021669 22.0724902
#> Dec 2003 3.63652568 112.7926598
#> Jan 2004 -2.85887914 181.3454336
#> Feb 2004 5.17669134 -8.3825685
#> Mar 2004 -1.02908670 136.7706666
#> Apr 2004 -9.74069593 -62.7434620
#> May 2004 12.70672301 -21.6629150
#> Jun 2004 9.60864787 -68.3713824
#> Jul 2004 7.68721370 -44.4702734
#> Aug 2004 10.35930771 60.6489806
#> Sep 2004 -4.73887074 62.4183075
#> Oct 2004 -12.75334875 -69.5431074
#> Nov 2004 -3.05620674 -78.3639078
#> Dec 2004 22.11769487 -95.3123859
#> Jan 2005 -10.41668381 179.2756071
#> Feb 2005 -11.46523850 34.8976696
#> Mar 2005 -16.75327303 25.9103768
#> Apr 2005 15.25938655 -80.5951897
#> May 2005 5.54185515 10.5664701
#> Jun 2005 19.93110265 -33.3599682
#> Jul 2005 -1.54120740 164.1847970
#> Aug 2005 25.64408338 -64.3905859
#> Sep 2005 10.61999145 58.7020562
#> Oct 2005 11.42694878 -15.0403088
#> Nov 2005 11.23838843 -171.0821848
#> Dec 2005 -3.97001493 143.1032558
#> Jan 2006 -8.23261151 -264.5212268
#> Feb 2006 -5.78884625 -103.2457405
#> Mar 2006 17.63789378 -70.7466431
#> Apr 2006 1.32992146 -70.0560014
#> May 2006 3.76499328 53.7885439
#> Jun 2006 11.38707653 -31.6332175
#> Jul 2006 12.41263075 -83.9622754
#> Aug 2006 6.12090945 -135.4928062
#> Sep 2006 -4.29380087 -81.7568272
#> Oct 2006 13.60461327 -63.4400003
#> Nov 2006 -0.70857431 81.5949433
#> Dec 2006 -2.72153684 30.2795706
#> Jan 2007 -24.46680029 180.7086625
#> Feb 2007 0.65486641 -89.4026756
#> Mar 2007 -10.98508902 -4.6428211
#> Apr 2007 -6.33178176 -47.1179138
#> May 2007 -20.63654451 -52.6692630
#> Jun 2007 26.48932029 -9.5134908
#> Jul 2007 -11.53398386 -249.5364809
#> Aug 2007 -3.40637876 16.6889217
#> Sep 2007 7.86362576 35.0492384
#> Oct 2007 -12.70513110 143.3701009
#> Nov 2007 5.42141549 76.5906803
#> Dec 2007 0.75105900 116.7520670
#> Jan 2008 5.58514422 -13.6943429
#> Feb 2008 4.15406399 -51.4902044
#> Mar 2008 -14.52299769 151.9744468
#> Apr 2008 9.41206122 -32.8491678
#> May 2008 -3.38935872 -5.3671506
#> Jun 2008 -0.75574247 -56.3524635
#> Jul 2008 0.40204392 -74.3908963
#> Aug 2008 1.24301066 -10.9041651
#> Sep 2008 -9.98432551 -56.0829227
#> Oct 2008 12.33390065 18.8001549
#> Nov 2008 3.40424488 74.8850942
#> Dec 2008 -4.72702482 -191.6538316
#> Jan 2009 7.08753061 23.6095847
#> Feb 2009 -15.28958715 62.8953415
#> Mar 2009 2.37425345 41.7925676
#> Apr 2009 -13.12814246 197.6758477
#> May 2009 7.47028587 -50.6286298
#> Jun 2009 -15.62518435 -110.9968853
#> Jul 2009 0.71053360 -94.8705723
#> Aug 2009 -6.39534770 47.6843757
#> Sep 2009 -8.45195739 -79.5201560
#> Oct 2009 6.75244698 23.4326923
#> Nov 2009 11.53375794 -122.2451097
#> Dec 2009 -16.86504742 -245.3647354
#> Jan 2010 -9.02814949 -148.9260814
#> Feb 2010 13.17633698 -43.2147734
#> Mar 2010 11.00189745 -94.2554006
#> Apr 2010 12.03767839 -12.1450799
#> May 2010 -14.31270777 133.6446798
#> Jun 2010 13.82910861 -86.0356182
#> Jul 2010 0.03125940 66.6537820
#> Aug 2010 -0.77886824 -142.1534746
#> Sep 2010 4.41428226 117.0056168
#> Oct 2010 1.28922896 -140.4714543
#> Nov 2010 -8.30214260 110.1708096
#> Dec 2010 -5.03592910 69.7986263
#> Jan 2011 -11.93641182 -86.4349803
#> Feb 2011 -7.51723323 -109.1470351
#> Mar 2011 14.55841403 -3.7051465
#> Apr 2011 -8.28603533 81.0053792
#> May 2011 2.89774460 -49.9355412
#> Jun 2011 -4.80053484 94.8031588
#> Jul 2011 -6.04829354 -17.4245957
#> Aug 2011 14.60110180 -110.6235952
#> Sep 2011 1.49679354 -94.5985005
#> Oct 2011 -14.33321100 28.9089591
#> Nov 2011 -0.10303319 87.6913145
#> Dec 2011 -2.12236035 -114.8903940
#> Jan 2012 -9.06340179 -113.7612756
#> Feb 2012 -21.02152479 -143.7246735
#> Mar 2012 18.93360464 -49.4143476
#> Apr 2012 -9.68125837 84.0801808
#> May 2012 -1.02603036 79.1534124
#> Jun 2012 2.39959572 -16.8848948
#> Jul 2012 0.60898893 61.2722104
#> Aug 2012 -21.77576028 -77.1158924
#> Sep 2012 -1.17860143 88.8628993
#> Oct 2012 1.12294787 1.3214477
#> Nov 2012 0.07886198 22.5339515
#> Dec 2012 18.77743872 -72.9915210
#> Jan 2013 21.58756554 -122.2487070
#> Feb 2013 7.09714522 40.6805171
#> Mar 2013 7.66983379 -75.1012223
#> Apr 2013 -3.08211421 -16.2116540
#> May 2013 10.12001849 35.2010126
#> Jun 2013 -9.19051597 -28.9058300
#> Jul 2013 5.63380077 10.4662227
#> Aug 2013 3.22482749 72.0186531
#> Sep 2013 3.66674363 -61.1046082
#> Oct 2013 11.29835153 -110.6914072
#> Nov 2013 -9.41498076 53.4803326
#> Dec 2013 2.17837643 73.6067968
#> Jan 2014 14.15412293 -122.2501574
#> Feb 2014 -3.83733048 102.1415310
#> Mar 2014 -1.74086374 46.5165158
#> Apr 2014 -2.21744517 79.0472705
#> May 2014 -10.09528722 -13.0264801
#> Jun 2014 4.80725266 -93.0285334
#> Jul 2014 16.04407328 -36.4851004
#> Aug 2014 -15.15024529 15.3872493
#> Sep 2014 -14.16023914 41.3154818
#> Oct 2014 8.76777327 248.0823360
#> Nov 2014 6.24132413 -217.9956742
#> Dec 2014 21.12277288 42.0874578
#> Jan 2015 -3.56124416 -35.7528325
#> Feb 2015 -10.64464209 -64.6861514
#> Mar 2015 10.77116538 -5.0141801
#> Apr 2015 11.81575567 41.6942847
#> May 2015 1.98392095 -63.2587542
#> Jun 2015 -4.00405249 115.0146673
#> Jul 2015 6.16154281 -23.5475907
#> Aug 2015 19.74156748 -164.3107386
#> Sep 2015 18.84662324 -150.3382146
#> Oct 2015 -15.88620547 -205.0584847
#> Nov 2015 -5.39923164 -75.3198229
#> Dec 2015 -11.69461464 -13.4141958
#> Jan 2016 5.59105989 100.5782847
#> Feb 2016 -18.19347247 216.7186798
#> Mar 2016 3.93343972 232.2556540
#> Apr 2016 0.42134106 -102.0423391
#> May 2016 11.79664177 4.8814436
#> Jun 2016 -2.56921176 -77.1888628
#> Jul 2016 -10.56336098 -78.5235068
#> Aug 2016 1.98777205 -72.6603031
#> Sep 2016 6.50533552 68.1878032
#> Oct 2016 3.43913337 -22.9843287
#> Nov 2016 14.77532312 -151.0601724
#> Dec 2016 0.72025698 -58.3727687
#> Jan 2017 21.26444534 -202.2918454
#> Feb 2017 -14.76196906 40.3504676
#> Mar 2017 4.07888500 55.0015549
#> Apr 2017 13.93977798 2.8357122
#> May 2017 3.60278296 89.3165020
#> Jun 2017 6.54550251 -37.6555496
#> Jul 2017 10.52155422 60.5884808
#> Aug 2017 -19.79555125 -0.4874726
#> Sep 2017 12.08385605 -52.0796373
#> Oct 2017 -1.69280084 -63.9018598
#> Nov 2017 2.95029753 -63.5894137
#> Dec 2017 12.66340587 10.6586975
#> Jan 2018 -11.35343257 117.6914248
#> Feb 2018 -11.31053798 44.7391153
#> Mar 2018 1.09993384 227.2954766
#> Apr 2018 8.52905410 13.6058206
#> May 2018 -2.34337862 -199.9039133
#> Jun 2018 20.86688567 -42.0500870
#> Jul 2018 -1.10919371 -37.8407395
#> Aug 2018 -13.92847056 122.0774789
#> Sep 2018 -11.42290768 -154.1030292
#> Oct 2018 17.04608737 -31.0310122
#> Nov 2018 -0.80073634 -2.0108184
#> Dec 2018 -4.37281240 -239.0200336
#> Jan 2019 -1.19215094 88.9865359
#> Feb 2019 7.86462865 -148.2813325
#> Mar 2019 -5.78945246 44.5750348
#> Apr 2019 -1.45426885 136.9775856
#> May 2019 5.26457991 -2.0110027
#> Jun 2019 17.33578110 -10.9217587
#> Jul 2019 14.48657220 26.4661745
#> Aug 2019 15.18193149 30.3848264
#> Sep 2019 -3.84007254 -18.3388483
#> Oct 2019 18.27125177 55.9649672
#> Nov 2019 -5.51491750 -18.6553842
#> Dec 2019 -8.65753541 -81.2275372
#> Jan 2020 -3.43831481 -164.0581672
#> Feb 2020 10.62876458 50.7922478
#> Mar 2020 8.13058204 175.4336961
#> Apr 2020 18.03483361 59.2400202
#> May 2020 -1.05068694 101.6713288
#> Jun 2020 9.82453362 12.1620586
#> Jul 2020 -17.13302622 -107.8067265
#> Aug 2020 -8.32019527 -114.3565720
#> Sep 2020 11.00491882 -52.9643677
#> Oct 2020 -1.73820106 -68.1273156
#> Nov 2020 1.78812018 -20.2447559
#> Dec 2020 -6.98429449 168.4495721
#>
#> $description
#> type coeff
#> var1 Undefined NA
#> var2 Undefined NA
#>
myreg3 <- regarima(myseries, myspec3)
myreg3
#> y = regression model + arima (2, 1, 1, 0, 1, 1)
#> Log-transformation: no
#> Coefficients:
#> Estimate Std. Error
#> Phi(1) -0.002136 0.111
#> Phi(2) 0.173889 0.074
#> Theta(1) -0.531219 0.106
#> BTheta(1) -0.669839 0.042
#>
#> Estimate Std. Error
#> r.var1 8.032e-03 0.009
#> r.var2 7.784e-05 0.001
#> Week days 6.885e-01 0.031
#> Leap year 2.303e+00 0.697
#> Easter [6] -2.540e+00 0.453
#> TC (4-2020) -2.122e+01 2.148
#> TC (3-2020) -2.093e+01 2.149
#> AO (5-2011) 1.338e+01 1.816
#> LS (11-2008) -1.228e+01 1.646
#> AO (5-2000) 6.213e+00 1.820
#>
#>
#> Residual standard error: 2.206 on 344 degrees of freedom
#> Log likelihood = -797.2, aic = 1624 aicc = 1626, bic(corrected for length) = 1.812
#>
# }