Estimation of a filter using Reproducing Kernel Hilbert Space (RKHS)
Usage
rkhs_filter(
horizon = 6,
degree = 2,
kernel = c("BiWeight", "Henderson", "Epanechnikov", "Triangular", "Uniform",
"TriWeight"),
asymmetricCriterion = c("Timeliness", "FrequencyResponse", "Accuracy", "Smoothness",
"Undefined"),
density = c("uniform", "rw"),
passband = 2 * pi/12,
optimalbw = TRUE,
optimal.minBandwidth = horizon,
optimal.maxBandwidth = 3 * horizon,
bandwidth = horizon + 1
)
Arguments
- horizon
horizon (bandwidth) of the symmetric filter.
- degree
degree of polynomial.
- kernel
kernel uses.
- asymmetricCriterion
the criteria used to compute the optimal bandwidth. If
"Undefined"
, \(m+1\) is used.- density
hypothesis on the spectral density:
"uniform"
(= white woise, the default) or"rw"
(= random walk).- passband
passband threshold.
- optimalbw
boolean indicating if the bandwith should be choosen by optimisation (between
optimal.minBandwidth
andoptimal.minBandwidth
using the criteriaasymmetricCriterion
). Ifoptimalbw = FALSE
then the bandwith specified inbandwidth
will be used.- optimal.minBandwidth, optimal.maxBandwidth
the range used for the optimal bandwith selection.
- bandwidth
the bandwidth to use if
optimalbw = FALSE
.
Value
a finite_filters()
object.
References
Dagum, Estela Bee and Silvia Bianconcini (2008). “The Henderson Smoother in Reproducing Kernel Hilbert Space”. In: Journal of Business & Economic Statistics 26, pp. 536–545. URL: https://ideas.repec.org/a/bes/jnlbes/v26y2008p536-545.html.
Examples
rkhs <- rkhs_filter(horizon = 6, asymmetricCriterion = "Timeliness")
plot_coef(rkhs)