Skip to contents

The function perform parametric tests which enable the users to detect potential bias (both mean and regression bias) and sources of inefficiency in preliminary estimates. We would conclude to inefficiency in the preliminary estimates when revisions are predictable in some way. In the results, parametric tests are divided into 5 categories: relevancy (check whether preliminary estimates are even worth it), bias, efficiency, orthogonality (correlation at higher lags), and signalVSnoise. Descriptive statistics on revisions are also provided. For some of the parametric tests, prior transformation of the vintage data may be important to avoid misleading results. By default, the decision to differentiate the vintage data is performed automatically based on unit root and co-integration tests whose results can be found found in the results too (section 'varbased'). Finally, running the function render_report() on the output of revision_analysis() would give you both a formatted summary of the results and full explanations about each tests.

Usage

revision_analysis(
  vintages,
  gap = 1,
  view = c("vertical", "diagonal"),
  n.releases = 3,
  transf.diff = c("auto", "forced", "none"),
  transf.log = FALSE,
  descriptive.rounding = 3,
  nrevs = 1,
  ref = 1,
  na.zero = FALSE
)

Arguments

vintages

an object of class "rjd3rev_vintages" which is the output of the function create_vintages()

gap

Integer. Gap to consider between each vintages. Default is 1 which means that revisions are calculated and tested for each vintages consecutively.

view

Selected view. Can be "vertical" (the default) or "diagonal". Vertical view shows the observed values at each time period by the different vintages. Diagonal view shows subsequent releases of a given time period, without regard for the date of publication, which can be particularly informative when regular estimation intervals exist. See ?create_vintages() for more information about interests and drawbacks of each view.

n.releases

only used when view = "diagonal". Ignored otherwise. Allow the user to limit the number of releases under investigation). When view = "vertical", the user is invited to limit the number of vintages upstream through the parameter vintage_selection in create_vintages() whenever necessary.

transf.diff

differentiation to apply to the data prior testing. Only used for regressions including vintage data as regressor and/or regressand. Regression including revision data only are never differentiated even if transf.diff = "forced". Options are "automatic" (the default), "forced" and "none".

transf.log

Boolean whether a log-transformation should first be applied to the data. Default is FALSE.

descriptive.rounding

Integer. Number of decimals to display for descriptive statistics. Default is 3.

nrevs, ref

Integer. Number of lags to consider for orthogonality tests 1 and 2 respectively.

na.zero

Boolean whether missing values should be considered as 0 or rather as data not yet available (the default).

Value

an object of class 'rjd3rev_rslts'

See also

create_vintages() to create the input object, render_report() to get a summary and information the tests

Examples


## Simulated data

df_long <- simulate_long(
    n_period = 10L * 4L,
    n_revision = 10L,
    periodicity = 4L,
    start_period = as.Date("2010-01-01")
)

## Create a `"rjd3rev_vintages"` object with the input
vintages <- create_vintages(x = df_long, periodicity = 4L, date_format = "%Y-%m-%d")
# revisions <- get_revisions(vintages, gap = 1L) # just to get a first insight of the revisions

## Call using all default parameters
rslt1 <- revision_analysis(vintages)
#> Warning: Slope and drift could not be performed
#> Warning: efficiencyModel1 could not be performed
# render_report(rslt1, output_file = "report1", output_dir = "C:/Users/xxx")
summary(rslt1) # formatted summary only
#> Object of class rjd3rev_rslts
#> View: vertical 
#> There are 9 from 2010 1 to 2019 4 
#> 
#> List of all tests:
#> - summary.residuals :
#> 	- slope_and_drift
#> 	- efficiency1
#> 	- efficiency2
#> 	- orthogonality1
#> 	- orthogonality2
#> - relevancy :
#> 	- theil
#> - bias :
#> 	- t_ta_test
#> 	- slope_and_drift
#> - efficiency :
#> 	- efficiency1
#> 	- efficiency2
#> - orthogonality :
#> 	- orthogonality1
#> 	- orthogonality2
#> 	- autocorrelation_test
#> 	- seasonality_test
#> - signalnoise :
#> 	- signal_noise
#> - varbased :
#> 	- unit_root_test
#> 	- cointegration_test
#> 	- vecm
#> 
#> Revisions analysis dates: 
#> 	- [1]: [2010-11-17]-[2010-07-08] 
#> 	- [2]: [2013-06-04]-[2010-11-17] 
#> 	- [3]: [2015-11-10]-[2013-06-04] 
#> 	- [4]: [2016-03-25]-[2015-11-10] 
#> 	- [5]: [2017-06-29]-[2016-03-25] 
#> 	- [6]: [2017-09-10]-[2017-06-29] 
#> 	- [7]: [2018-10-26]-[2017-09-10] 
#> 	- [8]: [2019-07-13]-[2018-10-26] 
#> 	- [9]: [2020-02-27]-[2019-07-13] 
#> 
#> Tests results:
#>                                            Transf. [2010-11-17]-[2010-07-08]
#> Relevancy - Theil U2                          None              Good (0.477)
#> Bias1 T-test                                  None              Good (0.218)
#> Bias2 Augmented T-test                        None              Good (0.156)
#> Bias3 SlopeAndDrift (Ols L on P) - Mean       None                      <NA>
#> Bias3 SlopeAndDrift (Ols L on P) - Reg.       None                      <NA>
#> Efficiency1 (Ols R on P) - Mean            Delta 1                      <NA>
#> Efficiency1 (Ols R on P) - Reg.            Delta 1                      <NA>
#> Efficiency2 (Ols Rv on Rv_1) - Mean           None                          
#> Efficiency2 (Ols Rv on Rv_1) - Reg.           None                          
#> Orthogonality1 (Ols Rv on Rv_(1:p)) - Mean    None                          
#> Orthogonality1 (Ols Rv on Rv_(1:p)) - Reg.    None                          
#> Orthogonality2 (Ols Rv on Rv_k.) - Mean       None                          
#> Orthogonality2 (Ols Rv on Rv_k) - Reg.        None                          
#> Orthogonality3 AutoCorrelation (Ljung-Box)    None                      <NA>
#> Orthogonality4 Seasonality (Ljung-Box)     Delta 1              Good (1.000)
#> Orthogonality4 Seasonality (Friedman)      Delta 1                      <NA>
#> SignalVsNoise1 - Noise (Ols R on P)        Delta 1                Good (NaN)
#> SignalVsNoise2 - Signal (Ols R on L)       Delta 1                Good (NaN)
#>                                            [2013-06-04]-[2010-11-17]
#> Relevancy - Theil U2                                    Good (0.656)
#> Bias1 T-test                                            Good (0.933)
#> Bias2 Augmented T-test                                  Good (0.870)
#> Bias3 SlopeAndDrift (Ols L on P) - Mean                         <NA>
#> Bias3 SlopeAndDrift (Ols L on P) - Reg.                         <NA>
#> Efficiency1 (Ols R on P) - Mean                                 <NA>
#> Efficiency1 (Ols R on P) - Reg.                                 <NA>
#> Efficiency2 (Ols Rv on Rv_1) - Mean                       Good (NaN)
#> Efficiency2 (Ols Rv on Rv_1) - Reg.                       Good (NaN)
#> Orthogonality1 (Ols Rv on Rv_(1:p)) - Mean                Good (NaN)
#> Orthogonality1 (Ols Rv on Rv_(1:p)) - Reg.                Good (NaN)
#> Orthogonality2 (Ols Rv on Rv_k.) - Mean                   Good (NaN)
#> Orthogonality2 (Ols Rv on Rv_k) - Reg.                    Good (NaN)
#> Orthogonality3 AutoCorrelation (Ljung-Box)                      <NA>
#> Orthogonality4 Seasonality (Ljung-Box)                  Good (1.000)
#> Orthogonality4 Seasonality (Friedman)                           <NA>
#> SignalVsNoise1 - Noise (Ols R on P)                     Good (0.543)
#> SignalVsNoise2 - Signal (Ols R on L)               Uncertain (0.680)
#>                                            [2015-11-10]-[2013-06-04]
#> Relevancy - Theil U2                                    Good (0.688)
#> Bias1 T-test                                            Good (0.844)
#> Bias2 Augmented T-test                                  Good (0.787)
#> Bias3 SlopeAndDrift (Ols L on P) - Mean                         <NA>
#> Bias3 SlopeAndDrift (Ols L on P) - Reg.                         <NA>
#> Efficiency1 (Ols R on P) - Mean                                 <NA>
#> Efficiency1 (Ols R on P) - Reg.                                 <NA>
#> Efficiency2 (Ols Rv on Rv_1) - Mean                     Good (0.680)
#> Efficiency2 (Ols Rv on Rv_1) - Reg.                     Good (0.903)
#> Orthogonality1 (Ols Rv on Rv_(1:p)) - Mean              Good (0.680)
#> Orthogonality1 (Ols Rv on Rv_(1:p)) - Reg.              Good (0.097)
#> Orthogonality2 (Ols Rv on Rv_k.) - Mean                 Good (0.680)
#> Orthogonality2 (Ols Rv on Rv_k) - Reg.                  Good (0.903)
#> Orthogonality3 AutoCorrelation (Ljung-Box)                      <NA>
#> Orthogonality4 Seasonality (Ljung-Box)             Uncertain (0.032)
#> Orthogonality4 Seasonality (Friedman)                           <NA>
#> SignalVsNoise1 - Noise (Ols R on P)                     Good (0.426)
#> SignalVsNoise2 - Signal (Ols R on L)                    Good (0.043)
#>                                            [2016-03-25]-[2015-11-10]
#> Relevancy - Theil U2                                    Good (0.639)
#> Bias1 T-test                                            Good (0.395)
#> Bias2 Augmented T-test                                  Good (0.243)
#> Bias3 SlopeAndDrift (Ols L on P) - Mean                         <NA>
#> Bias3 SlopeAndDrift (Ols L on P) - Reg.                         <NA>
#> Efficiency1 (Ols R on P) - Mean                                 <NA>
#> Efficiency1 (Ols R on P) - Reg.                                 <NA>
#> Efficiency2 (Ols Rv on Rv_1) - Mean                     Good (0.536)
#> Efficiency2 (Ols Rv on Rv_1) - Reg.                     Good (0.053)
#> Orthogonality1 (Ols Rv on Rv_(1:p)) - Mean              Good (0.536)
#> Orthogonality1 (Ols Rv on Rv_(1:p)) - Reg.              Good (0.947)
#> Orthogonality2 (Ols Rv on Rv_k.) - Mean                 Good (0.536)
#> Orthogonality2 (Ols Rv on Rv_k) - Reg.                  Good (0.053)
#> Orthogonality3 AutoCorrelation (Ljung-Box)                      <NA>
#> Orthogonality4 Seasonality (Ljung-Box)                  Good (0.598)
#> Orthogonality4 Seasonality (Friedman)                           <NA>
#> SignalVsNoise1 - Noise (Ols R on P)                Uncertain (0.026)
#> SignalVsNoise2 - Signal (Ols R on L)               Uncertain (0.236)
#>                                            [2017-06-29]-[2016-03-25]
#> Relevancy - Theil U2                                    Good (0.372)
#> Bias1 T-test                                            Good (0.798)
#> Bias2 Augmented T-test                                  Good (0.724)
#> Bias3 SlopeAndDrift (Ols L on P) - Mean                         <NA>
#> Bias3 SlopeAndDrift (Ols L on P) - Reg.                         <NA>
#> Efficiency1 (Ols R on P) - Mean                                 <NA>
#> Efficiency1 (Ols R on P) - Reg.                                 <NA>
#> Efficiency2 (Ols Rv on Rv_1) - Mean                     Good (0.799)
#> Efficiency2 (Ols Rv on Rv_1) - Reg.                     Good (0.087)
#> Orthogonality1 (Ols Rv on Rv_(1:p)) - Mean              Good (0.799)
#> Orthogonality1 (Ols Rv on Rv_(1:p)) - Reg.              Good (0.913)
#> Orthogonality2 (Ols Rv on Rv_k.) - Mean                 Good (0.799)
#> Orthogonality2 (Ols Rv on Rv_k) - Reg.                  Good (0.087)
#> Orthogonality3 AutoCorrelation (Ljung-Box)                      <NA>
#> Orthogonality4 Seasonality (Ljung-Box)                  Good (0.898)
#> Orthogonality4 Seasonality (Friedman)                           <NA>
#> SignalVsNoise1 - Noise (Ols R on P)                Uncertain (0.011)
#> SignalVsNoise2 - Signal (Ols R on L)               Uncertain (0.654)
#>                                            [2017-09-10]-[2017-06-29]
#> Relevancy - Theil U2                                    Good (0.080)
#> Bias1 T-test                                            Good (0.360)
#> Bias2 Augmented T-test                                  Good (0.374)
#> Bias3 SlopeAndDrift (Ols L on P) - Mean                         <NA>
#> Bias3 SlopeAndDrift (Ols L on P) - Reg.                         <NA>
#> Efficiency1 (Ols R on P) - Mean                                 <NA>
#> Efficiency1 (Ols R on P) - Reg.                                 <NA>
#> Efficiency2 (Ols Rv on Rv_1) - Mean                     Good (0.452)
#> Efficiency2 (Ols Rv on Rv_1) - Reg.                     Good (0.426)
#> Orthogonality1 (Ols Rv on Rv_(1:p)) - Mean              Good (0.452)
#> Orthogonality1 (Ols Rv on Rv_(1:p)) - Reg.              Good (0.574)
#> Orthogonality2 (Ols Rv on Rv_k.) - Mean                 Good (0.452)
#> Orthogonality2 (Ols Rv on Rv_k) - Reg.                  Good (0.426)
#> Orthogonality3 AutoCorrelation (Ljung-Box)                      <NA>
#> Orthogonality4 Seasonality (Ljung-Box)                  Good (0.880)
#> Orthogonality4 Seasonality (Friedman)                           <NA>
#> SignalVsNoise1 - Noise (Ols R on P)                     Good (0.369)
#> SignalVsNoise2 - Signal (Ols R on L)                    Good (0.015)
#>                                            [2018-10-26]-[2017-09-10]
#> Relevancy - Theil U2                                    Good (0.045)
#> Bias1 T-test                                            Good (0.298)
#> Bias2 Augmented T-test                                  Good (0.171)
#> Bias3 SlopeAndDrift (Ols L on P) - Mean                         <NA>
#> Bias3 SlopeAndDrift (Ols L on P) - Reg.                         <NA>
#> Efficiency1 (Ols R on P) - Mean                                 <NA>
#> Efficiency1 (Ols R on P) - Reg.                                 <NA>
#> Efficiency2 (Ols Rv on Rv_1) - Mean                     Good (0.758)
#> Efficiency2 (Ols Rv on Rv_1) - Reg.                      Bad (0.001)
#> Orthogonality1 (Ols Rv on Rv_(1:p)) - Mean              Good (0.758)
#> Orthogonality1 (Ols Rv on Rv_(1:p)) - Reg.              Good (0.999)
#> Orthogonality2 (Ols Rv on Rv_k.) - Mean                 Good (0.758)
#> Orthogonality2 (Ols Rv on Rv_k) - Reg.                   Bad (0.001)
#> Orthogonality3 AutoCorrelation (Ljung-Box)                      <NA>
#> Orthogonality4 Seasonality (Ljung-Box)                  Good (0.966)
#> Orthogonality4 Seasonality (Friedman)                           <NA>
#> SignalVsNoise1 - Noise (Ols R on P)                Uncertain (0.029)
#> SignalVsNoise2 - Signal (Ols R on L)               Uncertain (0.647)
#>                                            [2019-07-13]-[2018-10-26]
#> Relevancy - Theil U2                                    Good (0.098)
#> Bias1 T-test                                            Good (0.833)
#> Bias2 Augmented T-test                                  Good (0.847)
#> Bias3 SlopeAndDrift (Ols L on P) - Mean                         <NA>
#> Bias3 SlopeAndDrift (Ols L on P) - Reg.                         <NA>
#> Efficiency1 (Ols R on P) - Mean                                 <NA>
#> Efficiency1 (Ols R on P) - Reg.                                 <NA>
#> Efficiency2 (Ols Rv on Rv_1) - Mean                     Good (0.720)
#> Efficiency2 (Ols Rv on Rv_1) - Reg.                   Severe (0.000)
#> Orthogonality1 (Ols Rv on Rv_(1:p)) - Mean              Good (0.720)
#> Orthogonality1 (Ols Rv on Rv_(1:p)) - Reg.              Good (1.000)
#> Orthogonality2 (Ols Rv on Rv_k.) - Mean                 Good (0.720)
#> Orthogonality2 (Ols Rv on Rv_k) - Reg.                Severe (0.000)
#> Orthogonality3 AutoCorrelation (Ljung-Box)                      <NA>
#> Orthogonality4 Seasonality (Ljung-Box)                  Good (0.057)
#> Orthogonality4 Seasonality (Friedman)                           <NA>
#> SignalVsNoise1 - Noise (Ols R on P)                     Good (0.076)
#> SignalVsNoise2 - Signal (Ols R on L)               Uncertain (0.535)
#>                                            [2020-02-27]-[2019-07-13]
#> Relevancy - Theil U2                                    Good (0.027)
#> Bias1 T-test                                            Good (0.664)
#> Bias2 Augmented T-test                                  Good (0.419)
#> Bias3 SlopeAndDrift (Ols L on P) - Mean                         <NA>
#> Bias3 SlopeAndDrift (Ols L on P) - Reg.                         <NA>
#> Efficiency1 (Ols R on P) - Mean                                 <NA>
#> Efficiency1 (Ols R on P) - Reg.                                 <NA>
#> Efficiency2 (Ols Rv on Rv_1) - Mean                     Good (0.380)
#> Efficiency2 (Ols Rv on Rv_1) - Reg.                     Good (0.446)
#> Orthogonality1 (Ols Rv on Rv_(1:p)) - Mean              Good (0.380)
#> Orthogonality1 (Ols Rv on Rv_(1:p)) - Reg.              Good (0.554)
#> Orthogonality2 (Ols Rv on Rv_k.) - Mean                 Good (0.380)
#> Orthogonality2 (Ols Rv on Rv_k) - Reg.                  Good (0.446)
#> Orthogonality3 AutoCorrelation (Ljung-Box)                      <NA>
#> Orthogonality4 Seasonality (Ljung-Box)                  Good (0.938)
#> Orthogonality4 Seasonality (Friedman)                           <NA>
#> SignalVsNoise1 - Noise (Ols R on P)                     Good (0.752)
#> SignalVsNoise2 - Signal (Ols R on L)               Uncertain (0.637)
View(rslt1) # formatted tables in viewer panel

Tests

Transf.

[2010-11-17]-[2010-07-08]

[2013-06-04]-[2010-11-17]

[2015-11-10]-[2013-06-04]

[2016-03-25]-[2015-11-10]

[2017-06-29]-[2016-03-25]

[2017-09-10]-[2017-06-29]

[2018-10-26]-[2017-09-10]

[2019-07-13]-[2018-10-26]

[2020-02-27]-[2019-07-13]

Relevancy - Theil U2

None

Good (0.477)

Good (0.656)

Good (0.688)

Good (0.639)

Good (0.372)

Good (0.080)

Good (0.045)

Good (0.098)

Good (0.027)

Bias1 T-test

None

Good (0.218)

Good (0.933)

Good (0.844)

Good (0.395)

Good (0.798)

Good (0.360)

Good (0.298)

Good (0.833)

Good (0.664)

Bias2 Augmented T-test

None

Good (0.156)

Good (0.870)

Good (0.787)

Good (0.243)

Good (0.724)

Good (0.374)

Good (0.171)

Good (0.847)

Good (0.419)

Bias3 SlopeAndDrift (Ols L on P) - Mean

None

Bias3 SlopeAndDrift (Ols L on P) - Reg.

None

Efficiency1 (Ols R on P) - Mean

Delta 1

Efficiency1 (Ols R on P) - Reg.

Delta 1

Efficiency2 (Ols Rv on Rv_1) - Mean

None

Good (NaN)

Good (0.680)

Good (0.536)

Good (0.799)

Good (0.452)

Good (0.758)

Good (0.720)

Good (0.380)

Efficiency2 (Ols Rv on Rv_1) - Reg.

None

Good (NaN)

Good (0.903)

Good (0.053)

Good (0.087)

Good (0.426)

Bad (0.001)

Severe (0.000)

Good (0.446)

Orthogonality1 (Ols Rv on Rv_(1:p)) - Mean

None

Good (NaN)

Good (0.680)

Good (0.536)

Good (0.799)

Good (0.452)

Good (0.758)

Good (0.720)

Good (0.380)

Orthogonality1 (Ols Rv on Rv_(1:p)) - Reg.

None

Good (NaN)

Good (0.097)

Good (0.947)

Good (0.913)

Good (0.574)

Good (0.999)

Good (1.000)

Good (0.554)

Orthogonality2 (Ols Rv on Rv_k.) - Mean

None

Good (NaN)

Good (0.680)

Good (0.536)

Good (0.799)

Good (0.452)

Good (0.758)

Good (0.720)

Good (0.380)

Orthogonality2 (Ols Rv on Rv_k) - Reg.

None

Good (NaN)

Good (0.903)

Good (0.053)

Good (0.087)

Good (0.426)

Bad (0.001)

Severe (0.000)

Good (0.446)

Orthogonality3 AutoCorrelation (Ljung-Box)

None

Orthogonality4 Seasonality (Ljung-Box)

Delta 1

Good (1.000)

Good (1.000)

Uncertain (0.032)

Good (0.598)

Good (0.898)

Good (0.880)

Good (0.966)

Good (0.057)

Good (0.938)

Orthogonality4 Seasonality (Friedman)

Delta 1

SignalVsNoise1 - Noise (Ols R on P)

Delta 1

Good (NaN)

Good (0.543)

Good (0.426)

Uncertain (0.026)

Uncertain (0.011)

Good (0.369)

Uncertain (0.029)

Good (0.076)

Good (0.752)

SignalVsNoise2 - Signal (Ols R on L)

Delta 1

Good (NaN)

Uncertain (0.680)

Good (0.043)

Uncertain (0.236)

Uncertain (0.654)

Good (0.015)

Uncertain (0.647)

Uncertain (0.535)

Uncertain (0.637)

## Calls using diagonal view (suited in many situations such as to evaluate GDP estimates) ## Note: when input are not growth rates but the gross series, differentiation is ## performed automatically (if transf.diff is let to its default option) but `transf.log` ## must be set to TRUE manually whenever a log-transformation of the data is necessary rslt2 <- revision_analysis(vintages, gap = 1, view = "diagonal", n.releases = 3) # render_report(rslt2, output_file = "report2", output_dir = "C:/Users/xxx", # output_format = "word_document", plot_revisions = TRUE) summary(rslt2) #> Object of class rjd3rev_rslts #> View: diagonal #> There are 2 from 2010 1 to 2019 4 #> #> List of all tests: #> - summary.residuals : #> - slope_and_drift #> - efficiency1 #> - efficiency2 #> - orthogonality1 #> - orthogonality2 #> - relevancy : #> - theil #> - bias : #> - t_ta_test #> - slope_and_drift #> - efficiency : #> - efficiency1 #> - efficiency2 #> - orthogonality : #> - orthogonality1 #> - orthogonality2 #> - autocorrelation_test #> - seasonality_test #> - signalnoise : #> - signal_noise #> - varbased : #> - unit_root_test #> - cointegration_test #> - vecm #> #> Revisions analysis dates: #> - [1]: [Release[2]]-[Release[1]] #> - [2]: [Release[3]]-[Release[2]] #> #> Tests results: #> Transf. [Release[2]]-[Release[1]] #> Relevancy - Theil U2 None Good (0.684) #> Bias1 T-test None Good (0.878) #> Bias2 Augmented T-test None Good (0.845) #> Bias3 SlopeAndDrift (Ols L on P) - Mean None Good (0.862) #> Bias3 SlopeAndDrift (Ols L on P) - Reg. None Good (0.927) #> Efficiency1 (Ols R on P) - Mean Delta 1 Good (0.326) #> Efficiency1 (Ols R on P) - Reg. Delta 1 Good (0.162) #> Efficiency2 (Ols Rv on Rv_1) - Mean None #> Efficiency2 (Ols Rv on Rv_1) - Reg. None #> Orthogonality1 (Ols Rv on Rv_(1:p)) - Mean None #> Orthogonality1 (Ols Rv on Rv_(1:p)) - Reg. None #> Orthogonality2 (Ols Rv on Rv_k.) - Mean None #> Orthogonality2 (Ols Rv on Rv_k) - Reg. None #> Orthogonality3 AutoCorrelation (Ljung-Box) None Good (0.214) #> Orthogonality4 Seasonality (Ljung-Box) Delta 1 Severe (0.001) #> Orthogonality4 Seasonality (Friedman) Delta 1 Uncertain (0.033) #> SignalVsNoise1 - Noise (Ols R on P) Delta 1 Good (0.145) #> SignalVsNoise2 - Signal (Ols R on L) Delta 1 Uncertain (0.053) #> [Release[3]]-[Release[2]] #> Relevancy - Theil U2 Good (0.638) #> Bias1 T-test Good (0.737) #> Bias2 Augmented T-test Good (0.602) #> Bias3 SlopeAndDrift (Ols L on P) - Mean Good (0.676) #> Bias3 SlopeAndDrift (Ols L on P) - Reg. Good (0.797) #> Efficiency1 (Ols R on P) - Mean Good (0.055) #> Efficiency1 (Ols R on P) - Reg. Bad (0.005) #> Efficiency2 (Ols Rv on Rv_1) - Mean Good (0.742) #> Efficiency2 (Ols Rv on Rv_1) - Reg. Bad (0.009) #> Orthogonality1 (Ols Rv on Rv_(1:p)) - Mean Good (0.742) #> Orthogonality1 (Ols Rv on Rv_(1:p)) - Reg. Good (0.991) #> Orthogonality2 (Ols Rv on Rv_k.) - Mean Good (0.742) #> Orthogonality2 (Ols Rv on Rv_k) - Reg. Bad (0.009) #> Orthogonality3 AutoCorrelation (Ljung-Box) Uncertain (0.040) #> Orthogonality4 Seasonality (Ljung-Box) Good (0.220) #> Orthogonality4 Seasonality (Friedman) Uncertain (0.041) #> SignalVsNoise1 - Noise (Ols R on P) Bad (0.002) #> SignalVsNoise2 - Signal (Ols R on L) Uncertain (0.994) View(rslt2)

Tests

Transf.

[Release[2]]-[Release[1]]

[Release[3]]-[Release[2]]

Relevancy - Theil U2

None

Good (0.684)

Good (0.638)

Bias1 T-test

None

Good (0.878)

Good (0.737)

Bias2 Augmented T-test

None

Good (0.845)

Good (0.602)

Bias3 SlopeAndDrift (Ols L on P) - Mean

None

Good (0.862)

Good (0.676)

Bias3 SlopeAndDrift (Ols L on P) - Reg.

None

Good (0.927)

Good (0.797)

Efficiency1 (Ols R on P) - Mean

Delta 1

Good (0.326)

Good (0.055)

Efficiency1 (Ols R on P) - Reg.

Delta 1

Good (0.162)

Bad (0.005)

Efficiency2 (Ols Rv on Rv_1) - Mean

None

Good (0.742)

Efficiency2 (Ols Rv on Rv_1) - Reg.

None

Bad (0.009)

Orthogonality1 (Ols Rv on Rv_(1:p)) - Mean

None

Good (0.742)

Orthogonality1 (Ols Rv on Rv_(1:p)) - Reg.

None

Good (0.991)

Orthogonality2 (Ols Rv on Rv_k.) - Mean

None

Good (0.742)

Orthogonality2 (Ols Rv on Rv_k) - Reg.

None

Bad (0.009)

Orthogonality3 AutoCorrelation (Ljung-Box)

None

Good (0.214)

Uncertain (0.040)

Orthogonality4 Seasonality (Ljung-Box)

Delta 1

Severe (0.001)

Good (0.220)

Orthogonality4 Seasonality (Friedman)

Delta 1

Uncertain (0.033)

Uncertain (0.041)

SignalVsNoise1 - Noise (Ols R on P)

Delta 1

Good (0.145)

Bad (0.002)

SignalVsNoise2 - Signal (Ols R on L)

Delta 1

Uncertain (0.053)

Uncertain (0.994)

## Call to evaluate revisions for a specific range of vintage periods vintages <- create_vintages( x = df_long, periodicity = 4L, vintage_selection = c(start = "2012-12-31", end = "2018-06-30") ) rslt3 <- revision_analysis(vintages, gap = 2, view = "vertical") #render_report(rslt3, output_file = "report2", output_dir = "C:/Users/xxx", plot_revisions = TRUE) summary(rslt3) #> Object of class rjd3rev_rslts #> View: vertical #> There are 3 from 2010 1 to 2019 4 #> #> List of all tests: #> - summary.residuals : #> - slope_and_drift #> - efficiency1 #> - efficiency2 #> - orthogonality1 #> - orthogonality2 #> - relevancy : #> - theil #> - bias : #> - t_ta_test #> - slope_and_drift #> - efficiency : #> - efficiency1 #> - efficiency2 #> - orthogonality : #> - orthogonality1 #> - orthogonality2 #> - autocorrelation_test #> - seasonality_test #> - signalnoise : #> - signal_noise #> - varbased : #> - unit_root_test #> - cointegration_test #> - vecm #> #> Revisions analysis dates: #> - [1]: [2016-03-25]-[2013-06-04] #> - [2]: [2017-06-29]-[2015-11-10] #> - [3]: [2017-09-10]-[2016-03-25] #> #> Tests results: #> Transf. [2016-03-25]-[2013-06-04] #> Relevancy - Theil U2 None Good (0.703) #> Bias1 T-test None Good (0.694) #> Bias2 Augmented T-test None Good (0.696) #> Bias3 SlopeAndDrift (Ols L on P) - Mean None Good (0.907) #> Bias3 SlopeAndDrift (Ols L on P) - Reg. None Good (0.265) #> Efficiency1 (Ols R on P) - Mean Delta 1 Good (0.227) #> Efficiency1 (Ols R on P) - Reg. Delta 1 Uncertain (0.043) #> Efficiency2 (Ols Rv on Rv_1) - Mean None #> Efficiency2 (Ols Rv on Rv_1) - Reg. None #> Orthogonality1 (Ols Rv on Rv_(1:p)) - Mean None #> Orthogonality1 (Ols Rv on Rv_(1:p)) - Reg. None #> Orthogonality2 (Ols Rv on Rv_k.) - Mean None #> Orthogonality2 (Ols Rv on Rv_k) - Reg. None #> Orthogonality3 AutoCorrelation (Ljung-Box) None Good (0.189) #> Orthogonality4 Seasonality (Ljung-Box) Delta 1 Good (0.630) #> Orthogonality4 Seasonality (Friedman) Delta 1 Good (0.122) #> SignalVsNoise1 - Noise (Ols R on P) Delta 1 Uncertain (0.045) #> SignalVsNoise2 - Signal (Ols R on L) Delta 1 Uncertain (0.579) #> [2017-06-29]-[2015-11-10] #> Relevancy - Theil U2 Good (0.561) #> Bias1 T-test Good (0.560) #> Bias2 Augmented T-test Good (0.497) #> Bias3 SlopeAndDrift (Ols L on P) - Mean Good (0.443) #> Bias3 SlopeAndDrift (Ols L on P) - Reg. Good (0.580) #> Efficiency1 (Ols R on P) - Mean Uncertain (0.041) #> Efficiency1 (Ols R on P) - Reg. Severe (0.001) #> Efficiency2 (Ols Rv on Rv_1) - Mean Good (0.518) #> Efficiency2 (Ols Rv on Rv_1) - Reg. Good (0.231) #> Orthogonality1 (Ols Rv on Rv_(1:p)) - Mean Good (0.518) #> Orthogonality1 (Ols Rv on Rv_(1:p)) - Reg. Good (0.769) #> Orthogonality2 (Ols Rv on Rv_k.) - Mean Good (0.518) #> Orthogonality2 (Ols Rv on Rv_k) - Reg. Good (0.231) #> Orthogonality3 AutoCorrelation (Ljung-Box) Good (0.131) #> Orthogonality4 Seasonality (Ljung-Box) Good (0.701) #> Orthogonality4 Seasonality (Friedman) Good (0.118) #> SignalVsNoise1 - Noise (Ols R on P) Bad (0.001) #> SignalVsNoise2 - Signal (Ols R on L) Uncertain (0.919) #> [2017-09-10]-[2016-03-25] #> Relevancy - Theil U2 Good (0.415) #> Bias1 T-test Good (0.847) #> Bias2 Augmented T-test Good (0.759) #> Bias3 SlopeAndDrift (Ols L on P) - Mean Good (0.868) #> Bias3 SlopeAndDrift (Ols L on P) - Reg. Good (0.523) #> Efficiency1 (Ols R on P) - Mean Good (0.202) #> Efficiency1 (Ols R on P) - Reg. Good (0.059) #> Efficiency2 (Ols Rv on Rv_1) - Mean Good (0.987) #> Efficiency2 (Ols Rv on Rv_1) - Reg. Good (0.698) #> Orthogonality1 (Ols Rv on Rv_(1:p)) - Mean Good (0.987) #> Orthogonality1 (Ols Rv on Rv_(1:p)) - Reg. Good (0.302) #> Orthogonality2 (Ols Rv on Rv_k.) - Mean Good (0.987) #> Orthogonality2 (Ols Rv on Rv_k) - Reg. Good (0.698) #> Orthogonality3 AutoCorrelation (Ljung-Box) Good (0.062) #> Orthogonality4 Seasonality (Ljung-Box) Good (0.576) #> Orthogonality4 Seasonality (Friedman) Good (0.706) #> SignalVsNoise1 - Noise (Ols R on P) Uncertain (0.042) #> SignalVsNoise2 - Signal (Ols R on L) Uncertain (0.995) View(rslt3)

Tests

Transf.

[2016-03-25]-[2013-06-04]

[2017-06-29]-[2015-11-10]

[2017-09-10]-[2016-03-25]

Relevancy - Theil U2

None

Good (0.703)

Good (0.561)

Good (0.415)

Bias1 T-test

None

Good (0.694)

Good (0.560)

Good (0.847)

Bias2 Augmented T-test

None

Good (0.696)

Good (0.497)

Good (0.759)

Bias3 SlopeAndDrift (Ols L on P) - Mean

None

Good (0.907)

Good (0.443)

Good (0.868)

Bias3 SlopeAndDrift (Ols L on P) - Reg.

None

Good (0.265)

Good (0.580)

Good (0.523)

Efficiency1 (Ols R on P) - Mean

Delta 1

Good (0.227)

Uncertain (0.041)

Good (0.202)

Efficiency1 (Ols R on P) - Reg.

Delta 1

Uncertain (0.043)

Severe (0.001)

Good (0.059)

Efficiency2 (Ols Rv on Rv_1) - Mean

None

Good (0.518)

Good (0.987)

Efficiency2 (Ols Rv on Rv_1) - Reg.

None

Good (0.231)

Good (0.698)

Orthogonality1 (Ols Rv on Rv_(1:p)) - Mean

None

Good (0.518)

Good (0.987)

Orthogonality1 (Ols Rv on Rv_(1:p)) - Reg.

None

Good (0.769)

Good (0.302)

Orthogonality2 (Ols Rv on Rv_k.) - Mean

None

Good (0.518)

Good (0.987)

Orthogonality2 (Ols Rv on Rv_k) - Reg.

None

Good (0.231)

Good (0.698)

Orthogonality3 AutoCorrelation (Ljung-Box)

None

Good (0.189)

Good (0.131)

Good (0.062)

Orthogonality4 Seasonality (Ljung-Box)

Delta 1

Good (0.630)

Good (0.701)

Good (0.576)

Orthogonality4 Seasonality (Friedman)

Delta 1

Good (0.122)

Good (0.118)

Good (0.706)

SignalVsNoise1 - Noise (Ols R on P)

Delta 1

Uncertain (0.045)

Bad (0.001)

Uncertain (0.042)

SignalVsNoise2 - Signal (Ols R on L)

Delta 1

Uncertain (0.579)

Uncertain (0.919)

Uncertain (0.995)

## Note that it is possible to change thresholds values for quality ## assessment using options (see vignette for details) options( augmented_t_threshold = c(severe = 0.005, bad = 0.01, uncertain = 0.05), slope_and_drift_threshold = c(severe = 0.005, bad = 0.05, uncertain = 0.10), theil_u2_threshold = c(uncertain = .5, bad = .7, severe = 1) ) rslt4 <- revision_analysis(vintages, gap = 1, view = "diagonal", n.releases = 3) summary(rslt4) #> Object of class rjd3rev_rslts #> View: diagonal #> There are 2 from 2010 1 to 2019 4 #> #> List of all tests: #> - summary.residuals : #> - slope_and_drift #> - efficiency1 #> - efficiency2 #> - orthogonality1 #> - orthogonality2 #> - relevancy : #> - theil #> - bias : #> - t_ta_test #> - slope_and_drift #> - efficiency : #> - efficiency1 #> - efficiency2 #> - orthogonality : #> - orthogonality1 #> - orthogonality2 #> - autocorrelation_test #> - seasonality_test #> - signalnoise : #> - signal_noise #> - varbased : #> - unit_root_test #> - cointegration_test #> - vecm #> #> Revisions analysis dates: #> - [1]: [Release[2]]-[Release[1]] #> - [2]: [Release[3]]-[Release[2]] #> #> Tests results: #> Transf. [Release[2]]-[Release[1]] #> Relevancy - Theil U2 None Uncertain (0.684) #> Bias1 T-test None Good (0.615) #> Bias2 Augmented T-test None Good (0.484) #> Bias3 SlopeAndDrift (Ols L on P) - Mean None Good (0.907) #> Bias3 SlopeAndDrift (Ols L on P) - Reg. None Good (0.635) #> Efficiency1 (Ols R on P) - Mean Delta 1 Good (0.634) #> Efficiency1 (Ols R on P) - Reg. Delta 1 Good (0.500) #> Efficiency2 (Ols Rv on Rv_1) - Mean None #> Efficiency2 (Ols Rv on Rv_1) - Reg. None #> Orthogonality1 (Ols Rv on Rv_(1:p)) - Mean None #> Orthogonality1 (Ols Rv on Rv_(1:p)) - Reg. None #> Orthogonality2 (Ols Rv on Rv_k.) - Mean None #> Orthogonality2 (Ols Rv on Rv_k) - Reg. None #> Orthogonality3 AutoCorrelation (Ljung-Box) None Good (0.115) #> Orthogonality4 Seasonality (Ljung-Box) Delta 1 Severe (0.000) #> Orthogonality4 Seasonality (Friedman) Delta 1 Bad (0.006) #> SignalVsNoise1 - Noise (Ols R on P) Delta 1 Good (0.615) #> SignalVsNoise2 - Signal (Ols R on L) Delta 1 Good (0.007) #> [Release[3]]-[Release[2]] #> Relevancy - Theil U2 Uncertain (0.639) #> Bias1 T-test Good (0.902) #> Bias2 Augmented T-test Good (0.867) #> Bias3 SlopeAndDrift (Ols L on P) - Mean Good (0.549) #> Bias3 SlopeAndDrift (Ols L on P) - Reg. Good (0.335) #> Efficiency1 (Ols R on P) - Mean Uncertain (0.046) #> Efficiency1 (Ols R on P) - Reg. Bad (0.001) #> Efficiency2 (Ols Rv on Rv_1) - Mean Good (0.743) #> Efficiency2 (Ols Rv on Rv_1) - Reg. Uncertain (0.015) #> Orthogonality1 (Ols Rv on Rv_(1:p)) - Mean Good (0.743) #> Orthogonality1 (Ols Rv on Rv_(1:p)) - Reg. Good (0.985) #> Orthogonality2 (Ols Rv on Rv_k.) - Mean Good (0.743) #> Orthogonality2 (Ols Rv on Rv_k) - Reg. Uncertain (0.015) #> Orthogonality3 AutoCorrelation (Ljung-Box) Good (0.262) #> Orthogonality4 Seasonality (Ljung-Box) Bad (0.001) #> Orthogonality4 Seasonality (Friedman) Bad (0.004) #> SignalVsNoise1 - Noise (Ols R on P) Bad (0.001) #> SignalVsNoise2 - Signal (Ols R on L) Uncertain (0.518) View(rslt4)

Tests

Transf.

[Release[2]]-[Release[1]]

[Release[3]]-[Release[2]]

Relevancy - Theil U2

None

Uncertain (0.684)

Uncertain (0.639)

Bias1 T-test

None

Good (0.615)

Good (0.902)

Bias2 Augmented T-test

None

Good (0.484)

Good (0.867)

Bias3 SlopeAndDrift (Ols L on P) - Mean

None

Good (0.907)

Good (0.549)

Bias3 SlopeAndDrift (Ols L on P) - Reg.

None

Good (0.635)

Good (0.335)

Efficiency1 (Ols R on P) - Mean

Delta 1

Good (0.634)

Uncertain (0.046)

Efficiency1 (Ols R on P) - Reg.

Delta 1

Good (0.500)

Bad (0.001)

Efficiency2 (Ols Rv on Rv_1) - Mean

None

Good (0.743)

Efficiency2 (Ols Rv on Rv_1) - Reg.

None

Uncertain (0.015)

Orthogonality1 (Ols Rv on Rv_(1:p)) - Mean

None

Good (0.743)

Orthogonality1 (Ols Rv on Rv_(1:p)) - Reg.

None

Good (0.985)

Orthogonality2 (Ols Rv on Rv_k.) - Mean

None

Good (0.743)

Orthogonality2 (Ols Rv on Rv_k) - Reg.

None

Uncertain (0.015)

Orthogonality3 AutoCorrelation (Ljung-Box)

None

Good (0.115)

Good (0.262)

Orthogonality4 Seasonality (Ljung-Box)

Delta 1

Severe (0.000)

Bad (0.001)

Orthogonality4 Seasonality (Friedman)

Delta 1

Bad (0.006)

Bad (0.004)

SignalVsNoise1 - Noise (Ols R on P)

Delta 1

Good (0.615)

Bad (0.001)

SignalVsNoise2 - Signal (Ols R on L)

Delta 1

Good (0.007)

Uncertain (0.518)