Skip to contents

Can lead to a better understanding of the nature of any nonstationary process among the different component series.

Usage

vecm(
  vintages.view,
  lag = 2,
  model = c("none", "cnt", "trend"),
  na.zero = FALSE
)

Arguments

vintages.view

mts object. Vertical or diagonal view of the create_vintages() output

lag

Number of lags

model

Character. Must be "none" (the default), "cnt" or "trend".

na.zero

Boolean whether missing values should be considered as 0 or rather as data not (yet) available (the default).

Examples

## Simulated data
df_long <- simulate_long(
    n_period = 10L * 4L,
    n_revision = 5L,
    periodicity = 4L,
    start_period = as.Date("2010-01-01")
)

## Create vintage and test
vintages <- create_vintages(df_long, periodicity = 4L)
vecm(vintages[["diagonal_view"]])
#>                            trace(2)   trace(1)    max(2)     max(1)
#> [Release[1]]_[Release[2]]  0.987357   9.784201  0.987357   8.796844
#> [Release[1]]_[Release[3]]  3.741767  16.296444  3.741767  12.554677
#> [Release[1]]_[Release[4]] 10.991390  31.146069 10.991390  20.154680
#> [Release[1]]_[Release[5]]  5.532100 203.671471  5.532100 198.139371
#> [Release[2]]_[Release[3]]  3.872700  16.537360  3.872700  12.664660
#> [Release[2]]_[Release[4]]  7.597858  19.233868  7.597858  11.636010
#> [Release[2]]_[Release[5]]  3.945131        NaN  3.945131        NaN
#> [Release[3]]_[Release[4]]  2.367197  15.350389  2.367197  12.983192
#> [Release[3]]_[Release[5]]  3.983886        NaN  3.983886        NaN
#> [Release[4]]_[Release[5]]  1.254674        NaN  1.254674        NaN