Skip to contents

Can lead to a better understanding of the nature of any nonstationary process among the different component series.

Usage

vecm(
  vintages.view,
  lag = 2,
  model = c("none", "cnt", "trend"),
  na.zero = FALSE
)

Arguments

vintages.view

mts object. Vertical or diagonal view of the create_vintages() output

lag

Number of lags

model

Character. Must be "none" (the default), "cnt" or "trend".

na.zero

Boolean whether missing values should be considered as 0 or rather as data not (yet) available (the default).

Examples

## Simulated data
df_long <- simulate_long(
    n_period = 10L * 4L,
    n_revision = 5L,
    periodicity = 4L,
    start_period = as.Date("2010-01-01")
)

## Create vintage and test
vintages <- create_vintages(df_long, periodicity = 4L)
vecm(vintages$diagonal_view)
#>                              trace(2)  trace(1)      max(2)    max(1)
#> [Release[1]]_[Release[2]] 3.148075268 12.259579 3.148075268  9.111504
#> [Release[1]]_[Release[3]] 2.029394378  9.167987 2.029394378  7.138593
#> [Release[1]]_[Release[4]] 1.974699818 12.379551 1.974699818 10.404851
#> [Release[1]]_[Release[5]] 0.121579484  7.913927 0.121579484  7.792347
#> [Release[2]]_[Release[3]] 2.716891232 15.836457 2.716891232 13.119566
#> [Release[2]]_[Release[4]] 1.953905182  6.413634 1.953905182  4.459729
#> [Release[2]]_[Release[5]] 0.341334751  9.378903 0.341334751  9.037568
#> [Release[3]]_[Release[4]] 1.817419613 11.724168 1.817419613  9.906748
#> [Release[3]]_[Release[5]] 0.104087544  5.751848 0.104087544  5.647760
#> [Release[4]]_[Release[5]] 0.004372904 12.642948 0.004372904 12.638576