Seasonal Adjustment with X13-ARIMA
Usage
x13(
ts,
spec = c("rsa4", "rsa0", "rsa1", "rsa2c", "rsa3", "rsa5c"),
context = NULL,
userdefined = NULL
)
x13_fast(
ts,
spec = c("rsa4", "rsa0", "rsa1", "rsa2c", "rsa3", "rsa5c"),
context = NULL,
userdefined = NULL
)
.jx13(
ts,
spec = c("rsa4", "rsa0", "rsa1", "rsa2c", "rsa3", "rsa5c"),
context = NULL,
userdefined = NULL
)
Arguments
- ts
an univariate time series.
- spec
the model specification. Can be either the name of a predefined specification or a user-defined specification.
- context
list of external regressors (calendar or other) to be used for estimation
- userdefined
a vector containing additional output variables (see
x13_dictionary()
).
Value
the x13()
function returns a list with the results, the estimation
specification and the result specification, while x13_fast()
is a faster
function that only returns the results. The .jx13()
functions only returns
results in a java object which will allow to customize outputs in other
packages (use rjd3toolkit::dictionary()
to get the list of variables and
rjd3toolkit::result()
to get a specific variable). In the estimation
functions x13()
and x13_fast()
you can directly use a specification name
(string). If you want to customize a specification you have to create a
specification object first.
Examples
y <- rjd3toolkit::ABS$X0.2.09.10.M
x13_fast(y, "rsa3")
#> Model: X-13
#> Log-transformation: yes
#> SARIMA model: (2,1,1) (0,1,1)
#>
#> SARIMA coefficients:
#> phi(1) phi(2) theta(1) btheta(1)
#> 0.3804 0.2140 -0.7025 -0.5626
#>
#> Regression model:
#> TC (2000-06-01) AO (2000-07-01)
#> 0.1548 -0.2951
#>
#> Seasonal filter: S3X3; Trend filter: H-23 terms
#> M-Statistics: q Good (0.560); q-m2 Good (0.617)
#> QS test on SA: Uncertain (0.035); F-test on SA: Good (0.999)
#>
#> For a more detailed output, use the 'summary()' function.
x13(y, "rsa5c")
#> Model: X-13
#> Log-transformation: yes
#> SARIMA model: (0,1,1) (1,1,1)
#>
#> SARIMA coefficients:
#> theta(1) bphi(1) btheta(1)
#> -0.8155 -0.4341 -0.8246
#>
#> Regression model:
#> monday tuesday wednesday thursday friday
#> -0.009156 0.004523 -0.001181 0.013349 -0.001501
#> saturday easter TC (2000-06-01) AO (2000-07-01)
#> 0.014993 0.051061 0.162337 -0.306371
#>
#> Seasonal filter: S3X3; Trend filter: H-23 terms
#> M-Statistics: q Good (0.385); q-m2 Good (0.427)
#> QS test on SA: Bad (0.004); F-test on SA: Good (0.986)
#>
#> For a more detailed output, use the 'summary()' function.
regarima_fast(y, "rg0")
#> Log-transformation: no
#> SARIMA model: (0,1,1) (0,1,1)
#>
#> SARIMA coefficients:
#> theta(1) btheta(1)
#> -0.8764 -0.3876
#>
#> No regression variables
#>
#> For a more detailed output, use the 'summary()' function.
regarima(y, "rg3")
#> Method: RegARIMA
#> Log-transformation: yes
#> SARIMA model: (2,1,1) (0,1,1)
#>
#> SARIMA coefficients:
#> phi(1) phi(2) theta(1) btheta(1)
#> 0.3804 0.2140 -0.7025 -0.5626
#>
#> Regression model:
#> TC (2000-06-01) AO (2000-07-01)
#> 0.1548 -0.2951
#>
#> For a more detailed output, use the 'summary()' function.
sp <- x13_spec("rsa5c")
sp <- rjd3toolkit::add_outlier(sp,
type = c("AO"), c("2015-01-01", "2010-01-01")
)
sp <- rjd3toolkit::set_transform(
rjd3toolkit::set_tradingdays(
rjd3toolkit::set_easter(sp, enabled = FALSE),
option = "workingdays"
),
fun = "None"
)
x13(y, spec = sp)
#> Model: X-13
#> Log-transformation: no
#> SARIMA model: (3,1,1) (0,1,1)
#>
#> SARIMA coefficients:
#> phi(1) phi(2) phi(3) theta(1) btheta(1)
#> 0.1656 0.0878 -0.1129 -0.8608 -0.2292
#>
#> Regression model:
#> td lp AO (2010-01-01) AO (2015-01-01) AO (2000-06-01)
#> 1.002 29.639 37.048 27.995 199.754
#> AO (2000-07-01) LS (2005-04-01) LS (2015-07-01)
#> -194.689 -82.306 81.333
#>
#> Seasonal filter: S3X2; Trend filter: H-23 terms
#> M-Statistics: q Good (0.552); q-m2 Good (0.624)
#> QS test on SA: Good (0.138); F-test on SA: Good (0.996)
#>
#> For a more detailed output, use the 'summary()' function.
sp <- set_x11(sp,
henderson.filter = 13
)
x13_fast(y, spec = sp)
#> Model: X-13
#> Log-transformation: no
#> SARIMA model: (3,1,1) (0,1,1)
#>
#> SARIMA coefficients:
#> phi(1) phi(2) phi(3) theta(1) btheta(1)
#> 0.1656 0.0878 -0.1129 -0.8608 -0.2292
#>
#> Regression model:
#> td lp AO (2010-01-01) AO (2015-01-01) AO (2000-06-01)
#> 1.002 29.639 37.048 27.995 199.754
#> AO (2000-07-01) LS (2005-04-01) LS (2015-07-01)
#> -194.689 -82.306 81.333
#>
#> Seasonal filter: S3X2; Trend filter: H-13 terms
#> M-Statistics: q Good (0.533); q-m2 Good (0.604)
#> QS test on SA: Good (0.117); F-test on SA: Good (0.997)
#>
#> For a more detailed output, use the 'summary()' function.