Function to create (and/or modify) a c("SA_spec", "TRAMO_SEATS")
class object with the SA model specification
for the TRAMO-SEATS method. It can be done from a pre-defined 'JDemetra+' model specification (a character
),
a previous specification (c("SA_spec", "TRAMO_SEATS")
object) or a seasonal adjustment model (c("SA", "TRAMO_SEATS")
object).
Usage
tramoseats_spec(
spec = c("RSAfull", "RSA0", "RSA1", "RSA2", "RSA3", "RSA4", "RSA5"),
preliminary.check = NA,
estimate.from = NA_character_,
estimate.to = NA_character_,
estimate.first = NA_integer_,
estimate.last = NA_integer_,
estimate.exclFirst = NA_integer_,
estimate.exclLast = NA_integer_,
estimate.tol = NA_integer_,
estimate.eml = NA,
estimate.urfinal = NA_integer_,
transform.function = c(NA, "Auto", "None", "Log"),
transform.fct = NA_integer_,
usrdef.outliersEnabled = NA,
usrdef.outliersType = NA,
usrdef.outliersDate = NA,
usrdef.outliersCoef = NA,
usrdef.varEnabled = NA,
usrdef.var = NA,
usrdef.varType = NA,
usrdef.varCoef = NA,
tradingdays.mauto = c(NA, "Unused", "FTest", "WaldTest"),
tradingdays.pftd = NA_integer_,
tradingdays.option = c(NA, "TradingDays", "WorkingDays", "UserDefined", "None"),
tradingdays.leapyear = NA,
tradingdays.stocktd = NA_integer_,
tradingdays.test = c(NA, "Separate_T", "Joint_F", "None"),
easter.type = c(NA, "Unused", "Standard", "IncludeEaster", "IncludeEasterMonday"),
easter.julian = NA,
easter.duration = NA_integer_,
easter.test = NA,
outlier.enabled = NA,
outlier.from = NA_character_,
outlier.to = NA_character_,
outlier.first = NA_integer_,
outlier.last = NA_integer_,
outlier.exclFirst = NA_integer_,
outlier.exclLast = NA_integer_,
outlier.ao = NA,
outlier.tc = NA,
outlier.ls = NA,
outlier.so = NA,
outlier.usedefcv = NA,
outlier.cv = NA_integer_,
outlier.eml = NA,
outlier.tcrate = NA_integer_,
automdl.enabled = NA,
automdl.acceptdefault = NA,
automdl.cancel = NA_integer_,
automdl.ub1 = NA_integer_,
automdl.ub2 = NA_integer_,
automdl.armalimit = NA_integer_,
automdl.reducecv = NA_integer_,
automdl.ljungboxlimit = NA_integer_,
automdl.compare = NA,
arima.mu = NA,
arima.p = NA_integer_,
arima.d = NA_integer_,
arima.q = NA_integer_,
arima.bp = NA_integer_,
arima.bd = NA_integer_,
arima.bq = NA_integer_,
arima.coefEnabled = NA,
arima.coef = NA,
arima.coefType = NA,
fcst.horizon = NA_integer_,
seats.predictionLength = NA_integer_,
seats.approx = c(NA, "None", "Legacy", "Noisy"),
seats.trendBoundary = NA_integer_,
seats.seasdBoundary = NA_integer_,
seats.seasdBoundary1 = NA_integer_,
seats.seasTol = NA_integer_,
seats.maBoundary = NA_integer_,
seats.method = c(NA, "Burman", "KalmanSmoother", "McElroyMatrix"),
benchmarking.enabled = NA,
benchmarking.target = c(NA, "Original", "CalendarAdjusted"),
benchmarking.useforecast = NA,
benchmarking.rho = NA_real_,
benchmarking.lambda = NA_real_
)
Arguments
- spec
a TRAMO-SEATS model specification. It can be the 'JDemetra+' name (
character
) of a predefined TRAMO-SEATS model specification (see Details), an object of classc("SA_spec","TRAMO_SEATS")
or an object of classc("SA", "TRAMO_SEATS")
. The default is"RSAfull"
.- preliminary.check
a
logical
to check the quality of the input series and exclude highly problematic series e.g. the series with a number of identical observations and/or missing values above pre-specified threshold values.The time span of the series, which is the (sub)period used to estimate the regarima model, is controlled by the following six variables:
estimate.from, estimate.to, estimate.first, estimate.last, estimate.exclFirst
andestimate.exclLast
; whereestimate.from
andestimate.to
have priority over the remaining span control variables,estimate.last
andestimate.first
have priority overestimate.exclFirst
andestimate.exclLast
, andestimate.last
has priority overestimate.first
. Default= "All".- estimate.from
a character in format "YYYY-MM-DD" indicating the start of the time span (e.g. "1900-01-01"). It can be combined with the parameter
estimate.to
.- estimate.to
a
character
in format "YYYY-MM-DD" indicating the end of the time span (e.g. "2020-12-31"). It can be combined with the parameterestimate.from
.- estimate.first
numeric
, the number of periods considered at the beginning of the series.- estimate.last
numeric
, the number of periods considered at the end of the series.- estimate.exclFirst
numeric
, the number of periods excluded at the beginning of the series. It can be combined with the parameterestimate.exclLast
.- estimate.exclLast
numeric
, the number of periods excluded at the end of the series. It can be combined with the parameterestimate.exclFirst
.- estimate.tol
numeric
, the convergence tolerance. The absolute changes in the log-likelihood function are compared to this value to check for the convergence of the estimation iterations.- estimate.eml
logical
, the exact maximum likelihood estimation. IfTRUE
, the program performs an exact maximum likelihood estimation. IfFASLE
, the Unconditional Least Squares method is used.- estimate.urfinal
numeric
, the final unit root limit. The threshold value for the final unit root test for identification of differencing orders. If the magnitude of an AR root for the final model is smaller than this number, then a unit root is assumed, the order of the AR polynomial is reduced by one and the appropriate order of the differencing (non-seasonal, seasonal) is increased.- transform.function
the transformation of the input series:
"None"
= no transformation of the series;"Log"
= takes the log of the series;"Auto"
= the program tests for the log-level specification.- transform.fct
numeric
controlling the bias in the log/level pre-test:transform.fct
> 1 favours levels,transform.fct
< 1 favours logs. Considered only whentransform.function
is set to"Auto"
.Control variables for the pre-specified outliers. Said pre-specified outliers are used in the model only when enabled (
usrdef.outliersEnabled=TRUE
) and when the outliers' type (usrdef.outliersType
) and date (usrdef.outliersDate
) are provided.- usrdef.outliersEnabled
logical
. IfTRUE
, the program uses the pre-specified outliers.- usrdef.outliersType
a vector defining the outliers' type. Possible types are:
("AO"
) = additive,("LS"
) = level shift,("TC"
) = transitory change,("SO"
) = seasonal outlier. E.g.:usrdef.outliersType= c("AO","AO","LS")
.- usrdef.outliersDate
a vector defining the outliers' date. The dates should be characters in format "YYYY-MM-DD". E.g.:
usrdef.outliersDate= c("2009-10-01","2005-02-01","2003-04-01")
.- usrdef.outliersCoef
a vector providing fixed coefficients for the outliers. The coefficients can't be fixed if the parameter
transform.function
is set to"Auto"
(i.e. if the series transformation needs to be pre-defined.) E.g.:usrdef.outliersCoef= c(200,170,20)
.Control variables for the user-defined variables:
- usrdef.varEnabled
logical
IfTRUE
, the program uses the user-defined variables.- usrdef.var
a time series (
ts
) or a matrix of time series (mts
) containing the user-defined variables.- usrdef.varType
a vector of character(s) defining the user-defined variables component type. Possible types are:
"Undefined", "Series", "Trend", "Seasonal", "SeasonallyAdjusted", "Irregular", "Calendar"
. To use the user-defined calendar regressors, the type"Calendar"
must be defined in conjunction withtradingdays.option = "UserDefined"
. Otherwise, the program will automatically setusrdef.varType = "Undefined"
.- usrdef.varCoef
a vector providing fixed coefficients for the user-defined variables. The coefficients can't be fixed if
transform.function
is set to"Auto"
(i.e. if the series transformation needs to be pre-defined).- tradingdays.mauto
defines whether the calendar effects should be added to the model manually (
"Unused"
) or automatically. During the automatic selection, the choice of the number of calendar variables can be based on the F-Test ("FTest"
) or the Wald Test ("WaldTest"
); the model with higher F value is chosen, provided that it is higher thantradingdays.pftd
).- tradingdays.pftd
numeric
. The p-value used in the test specified by the automatic parameter (tradingdays.mauto
) to assess the significance of the pre-tested calendar effects variables and whether they should be included in the RegArima model.Control variables for the manual selection of calendar effects variables (
tradingdays.mauto
is set to"Unused"
):- tradingdays.option
to choose the trading days regression variables:
"TradingDays"
= six day-of-the-week regression variables;"WorkingDays"
= one working/non-working day contrast variable;"None"
= no correction for trading days and working days effects;"UserDefined"
= user-defined trading days regressors (regressors must be defined by theusrdef.var
argument withusrdef.varType
set to"Calendar"
andusrdef.varEnabled = TRUE
)."None"
must also be chosen for the "day-of-week effects" correction (andtradingdays.stocktd
must be modified accordingly).- tradingdays.leapyear
logical
. Specifies if the leap-year correction should be included. IfTRUE
, the model includes the leap-year effect.- tradingdays.stocktd
numeric indicating the day of the month when inventories and other stock are reported (to denote the last day of the month set the variable to 31). Modifications of this variable are taken into account only when
tradingdays.option
is set to"None"
.- tradingdays.test
defines the pre-tests of the trading day effects:
"None"
= calendar variables are used in the model without pre-testing;"Separate_T"
= a t-test is applied to each trading day variable separately and the trading day variables are included in the RegArima model if at least one t-statistic is greater than 2.6 or if two t-statistics are greater than 2.0 (in absolute terms);"Joint_F"
= a joint F-test of significance of all the trading day variables. The trading day effect is significant if the F statistic is greater than 0.95.- easter.type
a
character
that specifies the presence and the length of the Easter effect:"Unused"
= the Easter effect is not considered;"Standard"
= influences the period ofn
days strictly before Easter Sunday;"IncludeEaster"
= influences the entire period (n
) up to and including Easter Sunday;"IncludeEasterMonday"
= influences the entire period (n
) up to and including Easter Monday.- easter.julian
logical
. IfTRUE
, the program uses the Julian Easter (expressed in Gregorian calendar).- easter.duration
numeric
indicating the duration of the Easter effect (length in days, between 1 and 15).- easter.test
logical
. IfTRUE
, the program performs a t-test for the significance of the Easter effect. The Easter effect is considered as significant if the modulus of t-statistic is greater than 1.96.- outlier.enabled
logical
. IfTRUE
, the automatic detection of outliers is enabled in the defined time span.The time span of the series to be searched for outliers is controlled by the following six variables:
outlier.from, outlier.to, outlier.first, outlier.last, outlier.exclFirst
andoutlier.exclLast
; whereoutlier.from
andoutlier.to
have priority over the remaining span control variables,outlier.last
andoutlier.first
have priority overoutlier.exclFirst
andoutlier.exclLast
, andoutlier.last
has priority overoutlier.first
.- outlier.from
a character in format "YYYY-MM-DD" indicating the start of the time span (e.g. "1900-01-01"). It can be combined with
outlier.to
.- outlier.to
a character in format "YYYY-MM-DD" indicating the end of the time span (e.g. "2020-12-31"). It can be combined with
outlier.from
.- outlier.first
numeric
specifying the number of periods considered at the beginning of the series.- outlier.last
numeric
specifying the number of periods considered at the end of the series.- outlier.exclFirst
numeric
specifying the number of periods excluded at the beginning of the series. It can be combined withoutlier.exclLast
.- outlier.exclLast
numeric
specifying the number of periods excluded at the end of the series. It can be combined withoutlier.exclFirst
.- outlier.ao
logical
. IfTRUE
, the automatic detection of additive outliers is enabled (outlier.enabled
must also be set toTRUE
).- outlier.tc
logical
. IfTRUE
, the automatic detection of transitory changes is enabled (outlier.enabled
must also be set toTRUE
).- outlier.ls
logical
. IfTRUE
, the automatic detection of level shifts is enabled (outlier.enabled
must also be set toTRUE
).- outlier.so
logical
. IfTRUE
, the automatic detection of seasonal outliers is enabled (outlier.enabled
must also be set toTRUE
).- outlier.usedefcv
logical
. IfTRUE
, the critical value for the outliers' detection procedure is automatically determined by the number of observations in the outlier detection time span. IfFALSE
, the procedure uses the entered critical value (outlier.cv
).- outlier.cv
numeric
. The entered critical value for the outliers' detection procedure. The modification of this variable is only taken in to account whenoutlier.usedefcv
is set toFALSE
.- outlier.eml
logical
for the exact likelihood estimation method. It controls the method applied for a parameter estimation in the intermediate steps of the automatic detection and correction of outliers. IfTRUE
, an exact likelihood estimation method is used. WhenFALSE
, the fast Hannan-Rissanen method is used.- outlier.tcrate
numeric
. The rate of decay for the transitory change outlier.- automdl.enabled
logical
. IfTRUE
, the automatic modelling of the ARIMA model is enabled. IfFALSE
, the parameters of the ARIMA model can be specified.Control variables for the automatic modelling of the ARIMA model (
automdl.enabled
is set toTRUE
):- automdl.acceptdefault
logical
. IfTRUE
, the default model (ARIMA(0,1,1)(0,1,1)) may be chosen in the first step of the automatic model identification. If the Ljung-Box Q statistics for the residuals is acceptable, the default model is accepted and no further attempt will be made to identify another model.- automdl.cancel
numeric
, the cancellation limit. If the difference in moduli of an AR and an MA roots (when estimating ARIMA(1,0,1)(1,0,1) models in the second step of the automatic identification of the differencing orders) is smaller than the cancellation limit, the two roots are assumed equal and canceled out.- automdl.ub1
numeric
, the first unit root limit. It is the threshold value for the initial unit root test in the automatic differencing procedure. When one of the roots in the estimation of the ARIMA(2,0,0)(1,0,0) plus mean model, performed in the first step of the automatic model identification procedure, is larger than first unit root limit in modulus, it is set equal to unity.- automdl.ub2
numeric
, the second unit root limit. When one of the roots in the estimation of the ARIMA(1,0,1)(1,0,1) plus mean model, which is performed in the second step of the automatic model identification procedure, is larger than second unit root limit in modulus, it is checked if there is a common factor in the corresponding AR and MA polynomials of the ARMA model that can be canceled (seeautomdl.cancel
). If there is no cancellation, the AR root is set equal to unity (i.e. the differencing order changes).- automdl.armalimit
numeric
, the arma limit. It is the threshold value for t-statistics of ARMA coefficients and the constant term used for the final test of model parsimony. If the highest order ARMA coefficient has a t-value smaller than this value in magnitude, the order of the model is reduced. If the constant term has a t-value smaller than the ARMA limit in magnitude, it is removed from the set of regressors.- automdl.reducecv
numeric
, ReduceCV. The percentage by which the outlier critical value will be reduced when an identified model is found to have a Ljung-Box statistic with an unacceptable confidence coefficient. The parameter should be between 0 and 1, and will only be active when automatic outlier identification is enabled. The reduced critical value will be set to (1-ReduceCV)xCV, where CV is the original critical value.- automdl.ljungboxlimit
numeric
, the Ljung Box limit, setting the acceptance criterion for the confidence intervals of the Ljung-Box Q statistic. If the LjungBox Q statistics for the residuals of a final model is greater than Ljung Box limit, then the model is rejected, the outlier critical value is reduced, and model and outlier identification (if specified) is redone with a reduced value.- automdl.compare
logical
. IfTRUE
, the program compares the model identified by the automatic procedure to the default model (ARIMA(0,1,1)(0,1,1)) and the model with the best fit is selected. Criteria considered are residual diagnostics, the model structure and the number of outliers.Control variables for the non-automatic modelling of the ARIMA model (
automdl.enabled
is set toFALSE
):- arima.mu
logical
. IfTRUE
, the mean is considered as part of the ARIMA model.- arima.p
numeric
. The order of the non-seasonal autoregressive (AR) polynomial.- arima.d
numeric
. The regular differencing order.- arima.q
numeric
. The order of the non-seasonal moving average (MA) polynomial.- arima.bp
numeric
. The order of the seasonal autoregressive (AR) polynomial.- arima.bd
numeric
. The seasonal differencing order.- arima.bq
numeric
. The order of the seasonal moving average (MA) polynomial.Control variables for the user-defined ARMA coefficients. Such coefficients can be defined for the regular and seasonal autoregressive (AR) polynomials and moving average (MA) polynomials. The model considers the coefficients only if the procedure for their estimation (
arima.coefType
) is provided, and the number of provided coefficients matches the sum of (regular and seasonal) AR and MA orders (p,q,bp,bq
).- arima.coefEnabled
logical
. IfTRUE
, the program uses the user-defined ARMA coefficients.- arima.coef
a vector providing the coefficients for the regular and seasonal AR and MA polynomials. The length of the vector must be equal to the sum of the regular and seasonal AR and MA orders. The coefficients shall be provided in the following order: regular AR (Phi -
p
elements), regular MA (Theta -q
elements), seasonal AR (BPhi -bp
elements) and seasonal MA (BTheta -bq
elements). E.g.:arima.coef=c(0.6,0.7)
witharima.p=1, arima.q=0,arima.bp=1
andarima.bq=0
.- arima.coefType
avector defining the ARMA coefficients estimation procedure. Possible procedures are:
"Undefined"
= no use of user-defined input (i.e. coefficients are estimated),"Fixed"
= fixes the coefficients at the value provided by the user,"Initial"
= the value defined by the user is used as initial condition. For orders for which the coefficients shall not be defined, thearima.coef
can be set toNA
or0
or thearima.coefType
can be set to"Undefined"
. E.g.:arima.coef = c(-0.8,-0.6,NA)
,arima.coefType = c("Fixed","Fixed","Undefined")
.- fcst.horizon
numeric
, the forecasting horizon. The length of the forecasts generated by the RegARIMA model in periods (positive values) or years (negative values). By default, the program generates two years forecasts (fcst.horizon
set to-2
).- seats.predictionLength
integer: the number of forecasts used in the decomposition. Negative values correspond to number of years. Default=-1.
- seats.approx
character: the approximation mode. When the ARIMA model estimated by TRAMO does not accept an admissible decomposition, SEATS:
"None"
- performs an approximation;"Legacy"
- replaces the model with a decomposable one;"Noisy"
- estimates a new model by adding a white noise to the non-admissible model estimated by TRAMO. Default="Legacy".- seats.trendBoundary
numeric: the trend boundary. The boundary beyond which an AR root is integrated in the trend component. If the modulus of the inverse real root is greater than the trend boundary, the AR root is integrated in the trend component. Below this value, the root is integrated in the transitory component. Possible values [0,1]. Default=0.5.
- seats.seasdBoundary
numeric: the seasonal boundary. The boundary beyond which a negative AR root is integrated in the seasonal component. If the modulus of the inverse negative real root is greater (or equal) than Seasonal boundary, the AR root is integrated into the seasonal component. Otherwise the root is integrated into the trend or transitory component. Possible values [0,1]. Default=0.8.
- seats.seasdBoundary1
numeric: the seasonal boundary (unique). The boundary beyond which a negative AR root is integrated in the seasonal component, when the root is the unique seasonal root. If the modulus of the inverse negative real root is greater (or equal) than Seasonal boundary, the AR root is integrated into the seasonal component. Otherwise the root is integrated into the trend or transitory component. Possible values [0,1]. Default=0.8.
- seats.seasTol
numeric: the seasonal tolerance. The tolerance (measured in degrees) to allocate the AR non-real roots to the seasonal component (if the modulus of the inverse complex AR root is greater than the trend boundary and the frequency of this root differs from one of the seasonal frequencies by less than Seasonal tolerance) or the transitory component (otherwise). Possible values in [0,10]. Default value 2.
- seats.maBoundary
numeric: the MA unit root boundary. When the modulus of an estimated MA root falls in the range (xl, 1), it is set to xl. Possible values [0.9,1]. Default=0.95.
- seats.method
character: the estimation method for the unobserved components. The choice can be made from:
"Burman"
: the default value. May result in a significant underestimation of the components' standard deviation, as it may become numerically unstable when some roots of the MA polynomial are near 1;"KalmanSmoother"
: it is not disturbed by the (quasi-) unit roots in MA;"McElroyMatrix"
: it has the same stability issues as the Burman's algorithm.
- benchmarking.enabled
logical: to enable benchmarking. If
TRUE
, the benchmarking is enabled.- benchmarking.target
character: the target of the benchmarking procedure, which can be the raw series (
"Original"
) or the series the adjusted for calendar effects ("CalendarAdjusted"
).- benchmarking.useforecast
logical: If
TRUE
, the forecasts of the seasonally adjusted variable and of the target variable are used in the benchmarking computation so the benchmarking constrains is also applied to the forecasting period.- benchmarking.rho
numeric: the value of the AR(1) parameter (set between 0 and 1) in the function used for benchmarking.
- benchmarking.lambda
numeric: a parameter used for benchmarking that relatesto to the weights in the regression equation. It is typically equal to 0, 1/2 or 1.
Value
A two-element list of class c("SA_spec", "TRAMO_SEATS")
, containing:
(1) an object of class c("regarima_spec", "TRAMO_SEATS")
with the RegARIMA model specification,
(2) an object of class c("seats_spec", "data.frame")
with the SEATS algorithm specification.
Each component refers to a different part of the SA model specification, mirroring the arguments of the function
(for details see the function arguments in the description).
Each lowest-level component (except span, pre-specified outliers, user-defined variables and pre-specified ARMA coefficients)
is structured as a data frame with columns denoting different variables of the model specification and rows referring to:
first row: the base specification, as provided within the argument
spec
;second row: user modifications as specified by the remaining arguments of the function (e.g.:
arima.d
);and third row: the final model specification.
The final specification (third row) shall include user modifications (row two) unless they were wrongly specified. The pre-specified outliers, user-defined variables and pre-specified ARMA coefficients consist of a list of
Predefined
(base model specification) andFinal
values.regarima
: an object of classc("regarima_spec", "TRAMO_SEATS")
. See Value of the functionregarima_spec_tramoseats
.seats
: a data.frame of classc("seats_spec", "data.frame")
, containing the seats variables in line with the names of the arguments variables. The final values can also be accessed with the functions_seats
.
Details
The available predefined 'JDemetra+' model specifications are described in the table below:
Identifier | | Log/level detection | | Outliers detection | | Calendar effects | | ARIMA | RSA0 | | NA | | NA | |
NA | | Airline(+mean) | RSA1 | | automatic | | AO/LS/TC | | NA | | Airline(+mean) | RSA2 | |
automatic | | AO/LS/TC | | 2 td vars + Easter | | Airline(+mean) | RSA3 | | automatic | | AO/LS/TC | | NA | |
automatic | RSA4 | | automatic | | AO/LS/TC | | 2 td vars + Easter | | automatic | RSA5 | | automatic | |
AO/LS/TC | | 7 td vars + Easter | | automatic | RSAfull | | automatic | | AO/LS/TC | | automatic | | automatic |
References
More information and examples related to 'JDemetra+' features in the online documentation: https://jdemetra-new-documentation.netlify.app/
Examples
# \donttest{
myseries <- ipi_c_eu[, "FR"]
myspec1 <- tramoseats_spec(spec = c("RSAfull"))
mysa1 <- tramoseats(myseries, spec = myspec1)
# To modify a pre-specified model specification
myspec2 <- tramoseats_spec(spec = "RSAfull", tradingdays.mauto = "Unused",
tradingdays.option = "WorkingDays",
easter.type = "Standard",
automdl.enabled = FALSE, arima.mu = TRUE)
mysa2 <- tramoseats(myseries, spec = myspec2)
# To modify the model specification of a "SA" object
myspec3 <- tramoseats_spec(mysa1, tradingdays.mauto = "Unused",
tradingdays.option = "WorkingDays",
easter.type = "Standard", automdl.enabled = FALSE, arima.mu = TRUE)
mysa3 <- tramoseats(myseries, myspec3)
# To modify the model specification of a "SA_spec" object
myspec4 <- tramoseats_spec(myspec1, tradingdays.mauto = "Unused",
tradingdays.option = "WorkingDays",
easter.type = "Standard", automdl.enabled = FALSE, arima.mu = TRUE)
mysa4 <- tramoseats(myseries, myspec4)
# Pre-specified outliers
myspec5 <- tramoseats_spec(spec = "RSAfull",
usrdef.outliersEnabled = TRUE,
usrdef.outliersType = c("LS", "LS"),
usrdef.outliersDate = c("2008-10-01", "2003-01-01"),
usrdef.outliersCoef = c(10,-8), transform.function = "None")
s_preOut(myspec5)
#> type date coeff
#> 1 LS 2008-10-01 10
#> 2 LS 2003-01-01 -8
mysa5 <- tramoseats(myseries, myspec5)
mysa5
#> RegARIMA
#> y = regression model + arima (2, 1, 0, 1, 1, 1)
#> Log-transformation: no
#> Coefficients:
#> Estimate Std. Error
#> Phi(1) 0.4872 0.051
#> Phi(2) 0.2964 0.051
#> BPhi(1) -0.2070 0.071
#> BTheta(1) -0.8048 0.044
#>
#> Estimate Std. Error
#> Week days 0.6814 0.039
#> Leap year 1.9125 0.726
#> Easter [6] -2.4901 0.461
#> TC (4-2020) -22.4492 2.288
#> TC (3-2020) -21.2013 2.296
#> AO (5-2011) 12.6414 1.908
#> LS (11-2008) -14.2909 1.954
#>
#> Fixed outliers:
#> Coefficients
#> LS (10-2008) 10
#> LS (1-2003) -8
#>
#>
#> Residual standard error: 2.421 on 347 degrees of freedom
#> Log likelihood = -831.3, aic = 1687 aicc = 1688, bic(corrected for length) = 1.949
#>
#>
#>
#> Decomposition
#> Model
#> AR : 1 + 0.487236 B + 0.296353 B^2 - 0.207019 B^12 - 0.100867 B^13 - 0.061351 B^14
#> D : 1 - B - B^12 + B^13
#> MA : 1 - 0.804783 B^12
#>
#>
#> SA
#> AR : 1 - 0.389767 B - 0.130954 B^2 - 0.259902 B^3
#> D : 1 - 2.000000 B + B^2
#> MA : 1 - 1.807789 B + 0.901808 B^2 - 0.269318 B^3 + 0.305238 B^4 - 0.126109 B^5
#> Innovation variance: 0.434195
#>
#> Trend
#> AR : 1 - 0.877002 B
#> D : 1 - 2.000000 B + B^2
#> MA : 1 - 0.714788 B - 0.995207 B^2 + 0.719581 B^3
#> Innovation variance: 0.02178125
#>
#> Seasonal
#> AR : 1 + 0.877002 B + 0.769133 B^2 + 0.674532 B^3 + 0.591566 B^4 + 0.518805 B^5 + 0.454993 B^6 + 0.399030 B^7 + 0.349950 B^8 + 0.306907 B^9 + 0.269159 B^10 + 0.236053 B^11
#> D : 1 + B + B^2 + B^3 + B^4 + B^5 + B^6 + B^7 + B^8 + B^9 + B^10 + B^11
#> MA : 1 + 2.178999 B + 3.063892 B^2 + 4.121863 B^3 + 5.003640 B^4 + 5.601993 B^5 + 6.042224 B^6 + 6.245708 B^7 + 6.304190 B^8 + 6.112595 B^9 + 5.879629 B^10 + 5.538195 B^11 + 4.649065 B^12 + 3.623707 B^13 + 2.832188 B^14 + 1.903031 B^15 + 1.111724 B^16 + 0.543666 B^17 + 0.100438 B^18 - 0.158107 B^19 - 0.300012 B^20 - 0.253276 B^21 - 0.169309 B^22
#> Innovation variance: 0.2937308
#>
#> Transitory
#> AR : 1 + 0.487236 B + 0.296353 B^2
#> MA : 1 + 0.374200 B + B^2
#> Innovation variance: 0.0004441626
#>
#> Irregular
#> Innovation variance: 0.2270517
#>
#>
#>
#> Final
#> Last observed values
#> y sa t s i
#> Jan 2020 101.0 103.36086 103.6698 -2.3608556 -0.30898902
#> Feb 2020 100.1 103.77440 103.7591 -3.6743960 0.01526074
#> Mar 2020 91.8 82.68181 103.8823 9.1181885 -21.20051445
#> Apr 2020 66.7 66.03104 104.0672 0.6689644 -38.03612893
#> May 2020 73.7 78.40145 104.3488 -4.7014498 -25.94737674
#> Jun 2020 98.2 87.17684 104.5662 11.0231647 -17.38939710
#> Jul 2020 97.4 92.05260 104.5630 5.3474007 -12.51040945
#> Aug 2020 71.7 96.37053 104.3138 -24.6705259 -7.94324202
#> Sep 2020 104.7 97.23252 103.8686 7.4674839 -6.63612508
#> Oct 2020 106.7 98.61143 103.4107 8.0885663 -4.79928434
#> Nov 2020 101.6 100.11916 103.0293 1.4808373 -2.91011190
#> Dec 2020 96.6 99.92823 102.7128 -3.3282284 -2.78459980
#>
#> Forecasts:
#> y_f sa_f t_f s_f i_f
#> Jan 2021 93.59565 100.9960 102.4996 -7.399679 -1.50358792
#> Feb 2021 97.28250 101.2996 102.3539 -4.015335 -1.05431433
#> Mar 2021 111.80873 101.4867 102.2239 10.324214 -0.73723634
#> Apr 2021 103.12191 101.5917 102.1076 1.532091 -0.51591304
#> May 2021 95.98703 101.6419 102.0033 -5.653012 -0.36144565
#> Jun 2021 112.41967 101.6567 101.9096 10.762935 -0.25290781
#> Jul 2021 103.94320 101.6482 101.8251 2.296412 -0.17699539
#> Aug 2021 78.58807 101.6248 101.7488 -23.036711 -0.12394718
#> Sep 2021 109.12657 101.5928 101.6796 7.534699 -0.08675036
#> Oct 2021 107.23292 101.5558 101.6166 5.678242 -0.06071652
#> Nov 2021 105.47170 101.5165 101.5590 3.956022 -0.04250960
#> Dec 2021 99.15981 101.4766 101.5063 -2.317856 -0.02975541
#>
#>
#> Diagnostics
#> Relative contribution of the components to the stationary
#> portion of the variance in the original series,
#> after the removal of the long term trend
#> Trend computed by Hodrick-Prescott filter (cycle length = 8.0 years)
#> Component
#> Cycle 3.137
#> Seasonal 61.551
#> Irregular 0.352
#> TD & Hol. 2.592
#> Others 30.919
#> Total 98.551
#>
#> Combined test in the entire series
#> Non parametric tests for stable seasonality
#> P.value
#> Kruskall-Wallis test 0.000
#> Test for the presence of seasonality assuming stability 0.000
#> Evolutive seasonality test 0.243
#>
#> Identifiable seasonality present
#>
#> Residual seasonality tests
#> P.value
#> qs test on sa 1.000
#> qs test on i 1.000
#> f-test on sa (seasonal dummies) 1.000
#> f-test on i (seasonal dummies) 1.000
#> Residual seasonality (entire series) 1.000
#> Residual seasonality (last 3 years) 0.990
#> f-test on sa (td) 0.024
#> f-test on i (td) 0.089
#>
#>
#> Additional output variables
s_preOut(mysa5)
#> type date coeff
#> 1 LS 2008-10-01 10
#> 2 LS 2003-01-01 -8
# User-defined calendar regressors
var1 <- ts(rnorm(length(myseries))*10, start = start(myseries), frequency = 12)
var2 <- ts(rnorm(length(myseries))*100, start = start(myseries), frequency = 12)
var<- ts.union(var1, var2)
myspec6 <- tramoseats_spec(spec = "RSAfull", tradingdays.option = "UserDefined",
usrdef.varEnabled = TRUE, usrdef.var = var,
usrdef.varType = c("Calendar", "Calendar"))
#> Warning: With tradingdays.option = "UserDefined", the parameters tradingdays.leapyear and tradingdays.stocktd are ignored.
s_preVar(myspec6)
#> $series
#> var1 var2
#> Jan 1990 8.765031871 -0.04656092
#> Feb 1990 -0.501382118 -11.76236571
#> Mar 1990 22.803903528 18.41482138
#> Apr 1990 13.798105639 -86.12007223
#> May 1990 -5.736360343 77.93108467
#> Jun 1990 -14.168374281 -45.40641716
#> Jul 1990 -12.449074589 -202.86071844
#> Aug 1990 9.000824800 13.74981227
#> Sep 1990 19.894302565 -65.31652495
#> Oct 1990 -27.869752864 72.00350979
#> Nov 1990 -0.231353042 80.84364277
#> Dec 1990 2.041608395 96.24521304
#> Jan 1991 0.442285247 10.31380723
#> Feb 1991 6.270974878 68.63601515
#> Mar 1991 -9.472495541 109.51989336
#> Apr 1991 -11.228269438 18.18922153
#> May 1991 -0.203236495 -19.68754162
#> Jun 1991 12.250255435 -84.80613844
#> Jul 1991 0.830589847 -187.74430764
#> Aug 1991 -18.859151704 -258.61413063
#> Sep 1991 10.569271276 10.80672274
#> Oct 1991 6.129121886 -183.83419463
#> Nov 1991 5.896500909 -12.30852580
#> Dec 1991 -0.664513411 14.74878788
#> Jan 1992 -6.081078807 -143.06464098
#> Feb 1992 9.473045743 -10.59880850
#> Mar 1992 3.931699575 50.31819093
#> Apr 1992 -3.852059312 251.26804489
#> May 1992 -6.092631219 -44.13813498
#> Jun 1992 -3.843851460 -217.89991293
#> Jul 1992 -9.014236692 -67.81489679
#> Aug 1992 8.729458934 72.88472658
#> Sep 1992 5.618212586 -124.34327365
#> Oct 1992 -17.572785220 -58.82719769
#> Nov 1992 -8.121160950 110.85391313
#> Dec 1992 2.386905873 -50.23799876
#> Jan 1993 25.060017195 34.72986863
#> Feb 1993 -9.805871650 174.81467948
#> Mar 1993 15.661250555 46.28553413
#> Apr 1993 -7.588674355 76.78697074
#> May 1993 4.938451044 45.10162329
#> Jun 1993 -3.271504519 -35.25772249
#> Jul 1993 -4.348790398 36.64544857
#> Aug 1993 15.197231060 -48.81248718
#> Sep 1993 0.036778033 87.33900144
#> Oct 1993 -4.023399502 179.87806220
#> Nov 1993 -14.954664332 105.07952142
#> Dec 1993 -9.459855132 217.52306395
#> Jan 1994 9.064295082 -18.35628629
#> Feb 1994 -18.138676228 -68.67930022
#> Mar 1994 -9.517754317 2.52921842
#> Apr 1994 11.268520993 77.70312224
#> May 1994 1.398890649 135.80460668
#> Jun 1994 1.003399767 31.19454244
#> Jul 1994 -12.045286294 99.11976849
#> Aug 1994 -0.834582964 -38.18986462
#> Sep 1994 -7.970822469 -88.02615153
#> Oct 1994 11.015245786 2.30683213
#> Nov 1994 1.084104063 70.83967956
#> Dec 1994 -11.905067990 147.10711674
#> Jan 1995 2.799212761 142.31851069
#> Feb 1995 7.774077731 -73.17572527
#> Mar 1995 -2.210897240 -122.78623180
#> Apr 1995 -1.376768354 -84.65572264
#> May 1995 1.152300433 164.14782427
#> Jun 1995 15.332695729 -253.69827268
#> Jul 1995 -6.557744602 151.49668186
#> Aug 1995 8.583787007 134.44652874
#> Sep 1995 -11.876705517 34.22179953
#> Oct 1995 5.395403804 -32.46704812
#> Nov 1995 -2.663621627 -95.09212602
#> Dec 1995 7.581722346 12.25963233
#> Jan 1996 -10.314020292 220.95975457
#> Feb 1996 10.249315104 130.49280363
#> Mar 1996 -1.452615921 -52.55140662
#> Apr 1996 1.092238302 115.16359225
#> May 1996 -14.785987947 82.61668965
#> Jun 1996 -22.791912223 115.62448319
#> Jul 1996 6.000768904 41.09726943
#> Aug 1996 -3.465781995 -5.60486435
#> Sep 1996 -2.851536719 78.01771348
#> Oct 1996 -6.476521580 -192.31777839
#> Nov 1996 -12.722147004 -27.36494881
#> Dec 1996 -1.751731809 60.37177315
#> Jan 1997 -22.013195775 -131.73483134
#> Feb 1997 5.798759794 95.55886301
#> Mar 1997 0.627964711 1.28535381
#> Apr 1997 17.751245181 29.14360940
#> May 1997 13.836946999 -201.68055585
#> Jun 1997 16.309602864 -159.64884036
#> Jul 1997 -8.083912981 79.05133025
#> Aug 1997 0.955654515 -5.59537712
#> Sep 1997 9.168081903 278.46565380
#> Oct 1997 4.738435430 39.54117043
#> Nov 1997 -3.952457160 269.79624187
#> Dec 1997 4.293985438 105.66101329
#> Jan 1998 8.509307909 178.18693119
#> Feb 1998 -1.703946179 131.86880388
#> Mar 1998 -0.007914038 -72.40831537
#> Apr 1998 8.606414955 -26.32911657
#> May 1998 6.403423802 -34.85907549
#> Jun 1998 1.068762896 -21.32519004
#> Jul 1998 -14.604777644 74.86664662
#> Aug 1998 4.551713753 -300.45498345
#> Sep 1998 12.720846841 -20.57101950
#> Oct 1998 -19.151875806 -14.35167183
#> Nov 1998 2.355890946 131.09571969
#> Dec 1998 10.559143097 76.45732607
#> Jan 1999 4.316772438 56.44685721
#> Feb 1999 -17.459432119 -17.53213851
#> Mar 1999 26.345754763 -0.25746856
#> Apr 1999 -0.308035714 58.87499380
#> May 1999 -22.561887639 17.53171579
#> Jun 1999 18.368225390 139.69229710
#> Jul 1999 4.985355661 82.54166479
#> Aug 1999 1.562468467 55.47305107
#> Sep 1999 5.565016905 54.53779827
#> Oct 1999 6.871069775 -53.63845039
#> Nov 1999 -33.041822297 -183.92675089
#> Dec 1999 8.783299631 -71.23421939
#> Jan 2000 14.611756864 -9.45664557
#> Feb 2000 -1.094066808 24.30159689
#> Mar 2000 13.256063791 102.04461058
#> Apr 2000 11.406805737 92.32619914
#> May 2000 -9.303642146 26.31799404
#> Jun 2000 -1.946233382 -68.75861883
#> Jul 2000 9.240072693 22.08611800
#> Aug 2000 -2.837713588 -55.41037774
#> Sep 2000 6.438188432 55.18463880
#> Oct 2000 12.049299753 -16.18329852
#> Nov 2000 -9.864334772 135.14035346
#> Dec 2000 13.629994009 -0.53331422
#> Jan 2001 -6.371366390 -240.51334407
#> Feb 2001 -12.527051445 98.98093589
#> Mar 2001 -5.751377304 -123.30316799
#> Apr 2001 -16.763008174 2.74105624
#> May 2001 2.628120182 -39.10052334
#> Jun 2001 -14.208832929 240.18101774
#> Jul 2001 7.738467161 55.41959989
#> Aug 2001 -6.301913980 56.07759451
#> Sep 2001 -25.232229681 -143.07888081
#> Oct 2001 10.456761237 25.65309367
#> Nov 2001 7.513402330 44.75129842
#> Dec 2001 7.981608534 90.91545502
#> Jan 2002 -15.676418337 -65.76117921
#> Feb 2002 -11.474768636 25.47812926
#> Mar 2002 4.355867220 -136.29594240
#> Apr 2002 10.532004191 -115.16580441
#> May 2002 9.635066048 9.23561855
#> Jun 2002 6.939309379 -52.61090352
#> Jul 2002 -2.300709516 -94.12824980
#> Aug 2002 -9.355586095 -116.03851187
#> Sep 2002 -9.026203778 146.32167885
#> Oct 2002 -0.308600940 -122.70357371
#> Nov 2002 -8.686782246 128.91223057
#> Dec 2002 21.877875041 52.19834145
#> Jan 2003 15.385301545 3.86469118
#> Feb 2003 -18.820726709 0.54809002
#> Mar 2003 9.158750045 205.09627114
#> Apr 2003 -4.017400140 58.40034881
#> May 2003 -12.568740002 -71.96403767
#> Jun 2003 11.843968692 31.72919743
#> Jul 2003 10.085724636 16.67156540
#> Aug 2003 -10.661521156 250.26785326
#> Sep 2003 -10.802139977 40.04087093
#> Oct 2003 -15.265903705 107.21119854
#> Nov 2003 -13.704004261 5.50009631
#> Dec 2003 -12.935694331 -6.13638601
#> Jan 2004 -29.610297132 -107.64435907
#> Feb 2004 11.255956830 50.43042930
#> Mar 2004 0.040275376 53.62245498
#> Apr 2004 1.626711541 -135.49772917
#> May 2004 -14.839223699 22.75063071
#> Jun 2004 11.648603184 -252.94187083
#> Jul 2004 -12.724193004 -81.85311433
#> Aug 2004 -11.137786657 -158.95299935
#> Sep 2004 -13.069370448 -108.24933233
#> Oct 2004 -1.742082303 20.58043597
#> Nov 2004 -6.832515233 -108.11823198
#> Dec 2004 -6.215682860 -18.87925541
#> Jan 2005 -1.551632320 31.27564538
#> Feb 2005 -10.864935828 7.47169985
#> Mar 2005 5.502220067 -60.43448541
#> Apr 2005 13.947806779 4.52466495
#> May 2005 -15.883192579 164.85396371
#> Jun 2005 20.675835289 -75.56829840
#> Jul 2005 -16.971130469 -28.81793527
#> Aug 2005 8.605076312 -73.01505059
#> Sep 2005 -3.796434887 52.41485203
#> Oct 2005 18.476301068 -59.17005292
#> Nov 2005 10.376561791 -118.39119861
#> Dec 2005 -14.695747682 120.03531317
#> Jan 2006 -27.769482100 -90.80713269
#> Feb 2006 -0.769797878 -154.88176869
#> Mar 2006 -9.544920721 40.80449528
#> Apr 2006 7.086794196 87.23428206
#> May 2006 17.770868082 -186.04776905
#> Jun 2006 8.663143079 20.61176045
#> Jul 2006 1.530058172 -106.55260009
#> Aug 2006 -0.463890794 44.42791106
#> Sep 2006 -16.728474148 39.00637392
#> Oct 2006 -10.898906119 -11.94045102
#> Nov 2006 -0.761757047 147.49626484
#> Dec 2006 -13.058317158 -129.46582609
#> Jan 2007 -0.623845628 -146.76126825
#> Feb 2007 3.423715685 -21.13007304
#> Mar 2007 -5.489306150 41.96187254
#> Apr 2007 9.150613267 143.33403558
#> May 2007 -0.876039035 -73.74681135
#> Jun 2007 -0.255794707 -12.50153428
#> Jul 2007 -12.543574063 27.98241470
#> Aug 2007 18.801248228 -44.73720260
#> Sep 2007 -1.409493686 4.79576801
#> Oct 2007 -1.066911374 109.28525350
#> Nov 2007 7.245550904 50.80096757
#> Dec 2007 4.288180835 -86.99107994
#> Jan 2008 -15.802157511 -70.26764757
#> Feb 2008 7.747558144 -135.94072699
#> Mar 2008 -11.642921245 34.56469912
#> Apr 2008 0.088543033 42.18054806
#> May 2008 -4.550780017 32.67116657
#> Jun 2008 -10.026900477 -96.35751113
#> Jul 2008 4.280695718 47.86579776
#> Aug 2008 2.025623016 78.05649166
#> Sep 2008 1.815832754 -18.54254995
#> Oct 2008 5.656938676 -37.14157620
#> Nov 2008 -2.776569799 -37.59064151
#> Dec 2008 -13.642484813 -104.97730923
#> Jan 2009 12.992072495 13.55098866
#> Feb 2009 -19.928465574 -104.19342492
#> Mar 2009 -1.037160872 137.15434613
#> Apr 2009 2.997662573 21.17230202
#> May 2009 -4.030004095 -41.99902912
#> Jun 2009 3.384909572 -51.45817426
#> Jul 2009 -14.784270394 -48.11891408
#> Aug 2009 -0.465149259 -2.28961166
#> Sep 2009 0.316881860 -23.58173751
#> Oct 2009 2.815326072 -4.29158886
#> Nov 2009 8.031952537 -53.34721852
#> Dec 2009 -2.088583488 24.09236569
#> Jan 2010 -3.367281762 27.57879994
#> Feb 2010 -4.563097517 98.73378846
#> Mar 2010 10.242603097 -60.71750184
#> Apr 2010 14.573951507 -24.31552344
#> May 2010 -2.249305874 -18.37188962
#> Jun 2010 2.900685098 56.45491125
#> Jul 2010 2.592765437 -64.56633054
#> Aug 2010 0.098922998 -198.41975169
#> Sep 2010 -1.846739254 -93.28107935
#> Oct 2010 16.542465847 186.45597497
#> Nov 2010 4.368543558 30.76683344
#> Dec 2010 8.473161118 -187.34768073
#> Jan 2011 9.962823002 -138.15863726
#> Feb 2011 10.674524423 121.42810047
#> Mar 2011 -0.533425785 14.14819037
#> Apr 2011 9.929262251 6.31038506
#> May 2011 -4.993526848 123.54612674
#> Jun 2011 -11.163933292 -109.65462143
#> Jul 2011 -9.745167645 -67.87837062
#> Aug 2011 27.874035400 -55.98672378
#> Sep 2011 -7.733134688 21.54763562
#> Oct 2011 34.805397484 -205.54352012
#> Nov 2011 -6.174219736 -52.04086283
#> Dec 2011 5.207824425 25.22639057
#> Jan 2012 5.925402530 15.31564241
#> Feb 2012 -9.003468488 49.21244244
#> Mar 2012 14.742813210 53.38223818
#> Apr 2012 10.851326027 -20.71323619
#> May 2012 -17.066874385 3.51198991
#> Jun 2012 -11.686962998 -112.09760249
#> Jul 2012 -14.194533339 -33.19658718
#> Aug 2012 6.459709494 -127.72551270
#> Sep 2012 -4.271327890 53.86513275
#> Oct 2012 11.898281468 134.88412839
#> Nov 2012 -1.398591424 60.11115022
#> Dec 2012 1.893959765 -1.27195862
#> Jan 2013 0.575844052 71.61389956
#> Feb 2013 -5.872461267 40.56344197
#> Mar 2013 -2.414145797 -35.48522938
#> Apr 2013 7.638003907 -83.12560816
#> May 2013 -6.780967332 22.50229021
#> Jun 2013 8.369941394 -68.84118696
#> Jul 2013 0.419394664 -64.87876143
#> Aug 2013 9.793095986 47.17313456
#> Sep 2013 14.960956543 17.46062477
#> Oct 2013 13.811671565 -39.32748689
#> Nov 2013 1.771868508 12.32405780
#> Dec 2013 -6.045588857 -200.66676498
#> Jan 2014 -0.064125536 120.97835399
#> Feb 2014 -10.309176045 14.03724416
#> Mar 2014 -5.966193013 -87.58278740
#> Apr 2014 12.300053344 96.23647351
#> May 2014 -21.252639407 119.02676925
#> Jun 2014 5.465412848 19.19778176
#> Jul 2014 10.114553407 -182.76005309
#> Aug 2014 13.671746024 -84.00768199
#> Sep 2014 7.078379701 162.33939897
#> Oct 2014 -1.225158540 16.00414539
#> Nov 2014 -7.994091347 160.01512693
#> Dec 2014 -1.793600041 11.42747080
#> Jan 2015 1.094528569 -136.54245494
#> Feb 2015 2.309265529 43.85387343
#> Mar 2015 -12.696631620 -96.15072720
#> Apr 2015 6.205258113 121.63488867
#> May 2015 -6.423485204 -78.07119719
#> Jun 2015 6.623578138 -68.22932097
#> Jul 2015 2.458842772 -224.34263707
#> Aug 2015 -8.478936872 18.02763931
#> Sep 2015 -4.347674107 78.15066352
#> Oct 2015 8.831759490 -95.72313412
#> Nov 2015 5.863186803 9.14070547
#> Dec 2015 -2.566920407 -41.57419781
#> Jan 2016 12.201357048 -66.14235523
#> Feb 2016 23.258879673 68.39716351
#> Mar 2016 -13.070423363 89.23843412
#> Apr 2016 0.002714681 -72.69075674
#> May 2016 11.425115700 101.57440260
#> Jun 2016 -2.219401352 -39.55934314
#> Jul 2016 -2.083145925 215.95110680
#> Aug 2016 7.499227118 221.55815780
#> Sep 2016 1.176056177 -25.57170694
#> Oct 2016 0.990212037 30.22917004
#> Nov 2016 13.616884687 -66.58050504
#> Dec 2016 -8.389882385 -69.60612070
#> Jan 2017 -10.649372190 68.33419337
#> Feb 2017 21.131680157 -58.92748703
#> Mar 2017 5.106671868 -7.40935495
#> Apr 2017 12.002630345 -111.22710265
#> May 2017 10.454600553 -59.10622513
#> Jun 2017 7.204436071 85.69446096
#> Jul 2017 5.029684073 50.88933898
#> Aug 2017 9.558412135 39.71038981
#> Sep 2017 4.921280559 38.67572514
#> Oct 2017 -1.559494684 37.01361846
#> Nov 2017 -4.330621776 103.67230979
#> Dec 2017 -12.234203505 235.87650580
#> Jan 2018 -2.903433729 -91.36020752
#> Feb 2018 3.402319889 127.55994229
#> Mar 2018 2.345520557 -143.90900919
#> Apr 2018 0.118239369 3.81422070
#> May 2018 6.047329872 -50.35721949
#> Jun 2018 7.375097630 -171.31774452
#> Jul 2018 -8.981034882 75.24516306
#> Aug 2018 1.718213563 -88.34021094
#> Sep 2018 9.132347891 13.65187786
#> Oct 2018 -11.051534547 42.62818848
#> Nov 2018 3.934501445 -92.51397505
#> Dec 2018 -13.698426711 -96.90957364
#> Jan 2019 7.394716153 -22.65827784
#> Feb 2019 6.383709370 -97.82239636
#> Mar 2019 -22.803538615 -53.33541279
#> Apr 2019 -20.112246984 86.63929336
#> May 2019 20.687405597 -49.33809414
#> Jun 2019 -13.150525575 -122.86158387
#> Jul 2019 -11.097503996 128.45631501
#> Aug 2019 0.548967197 121.17801722
#> Sep 2019 -8.625873906 1.78670750
#> Oct 2019 9.307754912 170.02477760
#> Nov 2019 5.711704007 134.41153529
#> Dec 2019 12.348319265 24.72495028
#> Jan 2020 4.620031264 -9.58509945
#> Feb 2020 -7.342081944 -10.58947708
#> Mar 2020 13.233606241 -126.11547136
#> Apr 2020 4.572947704 -176.02103994
#> May 2020 -7.364807522 179.14308123
#> Jun 2020 21.436128315 -80.10345784
#> Jul 2020 -3.381593680 -55.79331805
#> Aug 2020 -0.709703999 75.61174887
#> Sep 2020 -0.882100204 -6.56542801
#> Oct 2020 3.550907169 140.38251009
#> Nov 2020 -12.048084555 80.61231085
#> Dec 2020 14.560005038 -12.53344382
#>
#> $description
#> type coeff
#> var1 Calendar NA
#> var2 Calendar NA
#>
mysa6 <- tramoseats(myseries, myspec6)
#> Warning: [decomposition.Model decomposition: Parameters cut off]
myspec7 <- tramoseats_spec(spec = "RSAfull", usrdef.varEnabled = TRUE,
usrdef.var = var, usrdef.varCoef = c(17,-1),
transform.function = "None")
mysa7 <- tramoseats(myseries, myspec7)
#> Warning: [decomposition.Model decomposition: Parameters cut off]
# Pre-specified ARMA coefficients
myspec8 <- tramoseats_spec(spec = "RSAfull",
arima.coefEnabled = TRUE, automdl.enabled = FALSE,
arima.p = 2, arima.q = 0,
arima.bp = 1, arima.bq = 1,
arima.coef = c(-0.12, -0.12, -0.3, -0.99),
arima.coefType = rep("Fixed", 4))
mysa8 <- tramoseats(myseries, myspec8)
#> Warning: [decomposition.Model decomposition: Parameters cut off]
mysa8
#> RegARIMA
#> y = regression model + arima (2, 1, 0, 1, 1, 1)
#> Log-transformation: no
#> Coefficients:
#> Estimate Std. Error
#> Phi(1) -0.12 0
#> Phi(2) -0.12 0
#> BPhi(1) -0.30 0
#> BTheta(1) -0.99 0
#>
#> Estimate Std. Error
#> Mean -0.007018 0.029
#> Week days 0.704716 0.029
#> Leap year 2.163501 0.675
#> Easter [6] -2.360603 0.385
#> TC (4-2020) -25.280857 2.517
#> TC (3-2020) -21.581618 2.569
#> AO (5-2011) 14.219490 1.749
#> LS (11-2008) -6.225300 2.608
#>
#>
#> Residual standard error: 2.712 on 350 degrees of freedom
#> Log likelihood = -882.9, aic = 1784 aicc = 1784, bic(corrected for length) = 2.127
#>
#>
#>
#> Decomposition
#> Model
#> AR : 1 - 0.120000 B - 0.120000 B^2 - 0.300000 B^12 + 0.036000 B^13 + 0.036000 B^14
#> D : 1 - B - B^12 + B^13
#> MA : 1 - 0.950000 B^12
#>
#>
#> SA
#> AR : 1 - 1.024538 B - 0.011455 B^2 + 0.108545 B^3
#> D : 1 - 2.000000 B + B^2
#> MA : 1 - 1.941460 B + 0.995458 B^2 + 0.036596 B^3 - 0.098708 B^4 + 0.008921 B^5
#> Innovation variance: 0.4957156
#>
#> Trend
#> AR : 1 - 0.904538 B
#> D : 1 - 2.000000 B + B^2
#> MA : 1 - 0.722193 B - 0.998833 B^2 + 0.723360 B^3
#> Innovation variance: 0.1026625
#>
#> Seasonal
#> AR : 1 + 0.904538 B + 0.818189 B^2 + 0.740083 B^3 + 0.669433 B^4 + 0.605527 B^5 + 0.547723 B^6 + 0.495436 B^7 + 0.448140 B^8 + 0.405360 B^9 + 0.366664 B^10 + 0.331661 B^11
#> D : 1 + B + B^2 + B^3 + B^4 + B^5 + B^6 + B^7 + B^8 + B^9 + B^10 + B^11
#> MA : 1 + 2.915179 B + 5.617938 B^2 + 8.595374 B^3 + 11.505684 B^4 + 14.135215 B^5 + 16.348945 B^6 + 18.036965 B^7 + 19.197199 B^8 + 19.965176 B^9 + 20.301074 B^10 + 20.149549 B^11 + 19.110304 B^12 + 17.206569 B^13 + 14.558551 B^14 + 11.650924 B^15 + 8.806927 B^16 + 6.228869 B^17 + 4.044510 B^18 + 2.357558 B^19 + 1.170033 B^20 + 0.354583 B^21 - 0.052292 B^22
#> Innovation variance: 0.2584115
#>
#> Transitory
#> AR : 1 - 0.120000 B - 0.120000 B^2
#> MA : 1 + 1.287572 B + 0.287572 B^2
#> Innovation variance: 9.66767e-06
#>
#> Irregular
#> Innovation variance: 0.1228651
#>
#>
#>
#> Final
#> Last observed values
#> y sa t s i
#> Jan 2020 101.0 104.26082 104.1042 -3.260821 0.15661216
#> Feb 2020 100.1 104.61371 104.5530 -4.513714 0.06076253
#> Mar 2020 91.8 83.22384 104.8133 8.576159 -21.58942879
#> Apr 2020 66.7 64.54936 105.1877 2.150645 -40.63830016
#> May 2020 73.7 77.68315 105.6408 -3.983146 -27.95763593
#> Jun 2020 98.2 85.98531 105.6977 12.214693 -19.71243272
#> Jul 2020 97.4 91.30785 105.6878 6.092154 -14.37997103
#> Aug 2020 71.7 96.93855 105.3429 -25.238546 -8.40432490
#> Sep 2020 104.7 96.44550 104.0342 8.254501 -7.58868184
#> Oct 2020 106.7 97.99258 103.1705 8.707420 -5.17788550
#> Nov 2020 101.6 100.37821 102.7766 1.221785 -2.39834446
#> Dec 2020 96.6 98.88800 101.7659 -2.287995 -2.87795452
#>
#> Forecasts:
#> y_f sa_f t_f s_f i_f
#> Jan 2021 90.45630 99.25146 100.88131 -8.3529406 -1.62984885
#> Feb 2021 92.96291 99.26414 100.40502 -5.6858753 -1.14087970
#> Mar 2021 107.94414 99.16721 99.96582 9.4108234 -0.79860872
#> Apr 2021 100.06082 99.00111 99.56013 1.7251675 -0.55902344
#> May 2021 92.32683 98.79338 99.18469 -5.8047774 -0.39131514
#> Jun 2021 109.76210 98.56264 98.83656 11.5896516 -0.27391913
#> Jul 2021 99.28583 98.32134 98.51308 1.7410215 -0.19174293
#> Aug 2021 72.73390 98.07763 98.21185 -24.3850120 -0.13421991
#> Sep 2021 105.42789 97.83673 97.93068 8.1237153 -0.09395290
#> Oct 2021 103.20722 97.60185 97.66762 6.1153709 -0.06576632
#> Nov 2021 101.03104 97.37483 97.42087 4.2605212 -0.04603637
#> Dec 2021 96.56590 97.15661 97.18883 -0.4705564 -0.03222456
#>
#>
#> Diagnostics
#> Relative contribution of the components to the stationary
#> portion of the variance in the original series,
#> after the removal of the long term trend
#> Trend computed by Hodrick-Prescott filter (cycle length = 8.0 years)
#> Component
#> Cycle 3.408
#> Seasonal 72.835
#> Irregular 0.303
#> TD & Hol. 3.240
#> Others 18.296
#> Total 98.081
#>
#> Combined test in the entire series
#> Non parametric tests for stable seasonality
#> P.value
#> Kruskall-Wallis test 0.000
#> Test for the presence of seasonality assuming stability 0.000
#> Evolutive seasonality test 0.072
#>
#> Identifiable seasonality present
#>
#> Residual seasonality tests
#> P.value
#> qs test on sa 1.000
#> qs test on i 1.000
#> f-test on sa (seasonal dummies) 1.000
#> f-test on i (seasonal dummies) 1.000
#> Residual seasonality (entire series) 1.000
#> Residual seasonality (last 3 years) 0.881
#> f-test on sa (td) 0.008
#> f-test on i (td) 0.052
#>
#>
#> Additional output variables
s_arimaCoef(myspec8)
#> Type Value
#> Phi(1) Fixed -0.12
#> Phi(2) Fixed -0.12
#> BPhi(1) Fixed -0.30
#> BTheta(1) Fixed -0.99
s_arimaCoef(mysa8)
#> Type Value
#> Phi(1) Fixed -0.12
#> Phi(2) Fixed -0.12
#> BPhi(1) Fixed -0.30
#> BTheta(1) Fixed -0.99
# }