Skip to contents

Functions to estimate the seasonally adjusted series (sa) with the TRAMO-SEATS method. This is achieved by decomposing the time series (y) into the trend-cycle (t), the seasonal component (s) and the irregular component (i). Calendar-related movements can be corrected in the pre-treatment (TRAMO) step. tramoseats returns a preformatted result while jtramoseats returns the Java objects of the seasonal adjustment.

Usage

jtramoseats(
  series,
  spec = c("RSAfull", "RSA0", "RSA1", "RSA2", "RSA3", "RSA4", "RSA5"),
  userdefined = NULL
)

tramoseats(
  series,
  spec = c("RSAfull", "RSA0", "RSA1", "RSA2", "RSA3", "RSA4", "RSA5"),
  userdefined = NULL
)

Arguments

series

an univariate time series

spec

a TRAMO-SEATS model specification. It can be the name (character) of a pre-defined TRAMO-SEATS 'JDemetra+' model specification (see Details), or an object of class c("SA_spec","TRAMO_SEATS"). The default value is "RSAfull".

userdefined

a character vector containing the additional output variables (see user_defined_variables).

Value

jtramoseats returns a jSA object that contains the results of the seasonal adjustment without any formatting. Therefore, the computation is faster than with the function tramoseats. The results of the seasonal adjustment can be extracted with the function get_indicators.

tramoseats returns an object of class c("SA","TRAMO_SEATS"), that is, a list containing :

regarima

an object of class c("regarima","TRAMO_SEATS"). More info in the Value section of the function regarima.

decomposition

an object of class "decomposition_SEATS", that is a five-element list:

  • specification a list with the SEATS algorithm specification. See also the function tramoseats_spec.

  • mode the decomposition mode

  • model the SEATS model list: model, sa, trend, seasonal, transitory, irregular, each element being a matrix of estimated coefficients.

  • linearized the time series matrix (mts) with the stochastic series decomposition (input series y_lin, seasonally adjusted series sa_lin, trend t_lin, seasonal s_lin, irregular i_lin)

  • components the time series matrix (mts) with the decomposition components (input series y_cmp, seasonally adjusted series sa_cmp, trend t_cmp, seasonal component s_cmp, irregular i_cmp)

final

an object of class c("final","mts","ts","matrix"). The matrix contains the final results of the seasonal adjustment: the original time series (y)and its forecast (y_f), the trend (t) and its forecast (t_f), the seasonally adjusted series (sa) and its forecast (sa_f), the seasonal component (s)and its forecast (s_f), and the irregular component (i) and its forecast (i_f).

diagnostics

an object of class "diagnostics", that is a list containing three types of tests results:

  • variance_decomposition a data.frame with the tests results on the relative contribution of the components to the stationary portion of the variance in the original series, after the removal of the long term trend;

  • residuals_test a data.frame with the tests results of the presence of seasonality in the residuals (including the statistic test values, the corresponding p-values and the parameters description);

  • combined_test the combined tests for stable seasonality in the entire series. The format is a two-element list with: tests_for_stable_seasonality, a data.frame containing the tests results (including the statistic test value, its p-value and the parameters description), and combined_seasonality_test, the summary.

user_defined

an object of class "user_defined": a list containing the additional userdefined variables.

Details

The first step of a seasonal adjustment consists in pre-adjusting the time series with TRAMO. This is done by removing its deterministic effects (calendar and outliers), using a regression model with ARIMA noise (RegARIMA, see: regarima). In the second part, the pre-adjusted series is decomposed by the SEATS algorithm into the following components: trend-cycle (t), seasonal component (s) and irregular component (i). The decomposition can be: additive (\(y = t + s + i\)) or multiplicative (\(y = t * s * i\), in the latter case pre-adjustment and decomposition are performed on (\(log(y) = log(t) + log(s) + log(i)\)).

In the TRAMO-SEATS method, the second step - SEATS ("Signal Extraction in ARIMA Time Series") - performs an ARIMA-based decomposition of an observed time series into unobserved components. More information on this method at https://jdemetra-new-documentation.netlify.app/m-seats-decomposition.

The available predefined 'JDemetra+' TRAMO-SEATS model specifications are described in the table below:

Identifier |Log/level detection |Outliers detection |Calendar effects |ARIMARSA0 |NA |NA |
NA |Airline(+mean)RSA1 |automatic |AO/LS/TC |NA |Airline(+mean)RSA2 |
automatic |AO/LS/TC |2 td vars + Easter |Airline(+mean)RSA3 |automatic |AO/LS/TC |NA |
automaticRSA4 |automatic |AO/LS/TC |2 td vars + Easter |automaticRSA5 |automatic |
AO/LS/TC |7 td vars + Easter |automaticRSAfull |automatic |AO/LS/TC |automatic |automatic

References

More information and examples related to 'JDemetra+' features in the online documentation: https://jdemetra-new-documentation.netlify.app/

BOX G.E.P. and JENKINS G.M. (1970), "Time Series Analysis: Forecasting and Control", Holden-Day, San Francisco.

BOX G.E.P., JENKINS G.M., REINSEL G.C. and LJUNG G.M. (2015), "Time Series Analysis: Forecasting and Control", John Wiley & Sons, Hoboken, N. J., 5th edition.

See also

Examples

# \donttest{
#Example 1
myseries <- ipi_c_eu[, "FR"]
myspec <- tramoseats_spec("RSAfull")
mysa <- tramoseats(myseries, myspec)
mysa
#> RegARIMA
#> y = regression model + arima (2, 1, 0, 0, 1, 1)
#> Log-transformation: no
#> Coefficients:
#>           Estimate Std. Error
#> Phi(1)      0.4032      0.051
#> Phi(2)      0.2883      0.051
#> BTheta(1)  -0.6641      0.042
#> 
#>             Estimate Std. Error
#> Week days     0.6994      0.032
#> Leap year     2.3231      0.690
#> Easter [6]   -2.5154      0.436
#> AO (5-2011)  13.4679      1.787
#> TC (4-2020) -22.2128      2.205
#> TC (3-2020) -21.0391      2.217
#> AO (5-2000)   6.7386      1.794
#> 
#> 
#> Residual standard error: 2.326 on 348 degrees of freedom
#> Log likelihood = -816.1, aic =  1654 aicc =  1655, bic(corrected for length) = 1.852
#> 
#> 
#> 
#> Decomposition
#> Model
#> AR :  1 + 0.403230 B + 0.288342 B^2 
#> D :  1 - B - B^12 + B^13 
#> MA :  1 - 0.664088 B^12 
#> 
#> 
#> SA
#> AR :  1 + 0.403230 B + 0.288342 B^2 
#> D :  1 - 2.000000 B + B^2 
#> MA :  1 - 0.970348 B + 0.005940 B^2 - 0.005813 B^3 + 0.003576 B^4 
#> Innovation variance:  0.7043507 
#> 
#> Trend
#> D :  1 - 2.000000 B + B^2 
#> MA :  1 + 0.033519 B - 0.966481 B^2 
#> Innovation variance:  0.06093642 
#> 
#> Seasonal
#> D :  1 + B + B^2 + B^3 + B^4 + B^5 + B^6 + B^7 + B^8 + B^9 + B^10 + B^11 
#> MA :  1 + 1.328957 B + 1.105787 B^2 + 1.185470 B^3 + 1.067845 B^4 + 0.820748 B^5 + 0.632456 B^6 + 0.404457 B^7 + 0.245256 B^8 + 0.001615 B^9 - 0.055617 B^10 - 0.203557 B^11 
#> Innovation variance:  0.04290744 
#> 
#> Transitory
#> AR :  1 + 0.403230 B + 0.288342 B^2 
#> MA :  1 - 0.260079 B - 0.739921 B^2 
#> Innovation variance:  0.05287028 
#> 
#> Irregular
#> Innovation variance:  0.2032994 
#> 
#> 
#> 
#> Final
#> Last observed values
#>              y        sa        t           s            i
#> Jan 2020 101.0 102.93775 103.0182  -1.9377453  -0.08043801
#> Feb 2020 100.1 103.53944 103.2312  -3.4394383   0.30818847
#> Mar 2020  91.8  82.47698 103.4998   9.3230241 -21.02286361
#> Apr 2020  66.7  65.77310 103.9608   0.9268969 -38.18766871
#> May 2020  73.7  79.43342 104.7269  -5.7334221 -25.29345247
#> Jun 2020  98.2  88.07766 105.3319  10.1223443 -17.25422206
#> Jul 2020  97.4  92.71048 105.4216   4.6895154 -12.71111705
#> Aug 2020  71.7  97.32129 104.9801 -25.6212858  -7.65880696
#> Sep 2020 104.7  97.44274 104.0807   7.2572622  -6.63793072
#> Oct 2020 106.7  98.20925 103.1711   8.4907485  -4.96183772
#> Nov 2020 101.6  99.98044 102.4813   1.6195550  -2.50088282
#> Dec 2020  96.6  98.99458 101.9735  -2.3945790  -2.97892307
#> 
#> Forecasts:
#>                y_f     sa_f      t_f        s_f         i_f
#> Jan 2021  93.22264 100.1984 101.7578  -6.975740 -1.55946363
#> Feb 2021  96.81455 100.8845 101.7113  -4.069924 -0.82679910
#> Mar 2021 111.72198 100.8668 101.6647  10.855228 -0.79795880
#> Apr 2021 102.76178 101.0716 101.6181   1.690178 -0.54654378
#> May 2021  95.52744 101.2474 101.5716  -5.719910 -0.32422597
#> Jun 2021 111.44221 101.2711 101.5250  10.171157 -0.25395653
#> Jul 2021 103.57813 101.2947 101.4784   2.283395 -0.18370915
#> Aug 2021  78.21363 101.3135 101.4319 -23.099833 -0.11841662
#> Sep 2021 108.57631 101.3000 101.3853   7.276282 -0.08528380
#> Oct 2021 107.32040 101.2771 101.3387   6.043321 -0.06166933
#> Nov 2021 105.33458 101.2505 101.2922   4.084088 -0.04168414
#> Dec 2021  98.79675 101.2164 101.2456  -2.419656 -0.02920922
#> 
#> 
#> Diagnostics
#> Relative contribution of the components to the stationary
#> portion of the variance in the original series,
#> after the removal of the long term trend
#>  Trend computed by Hodrick-Prescott filter (cycle length = 8.0 years)
#>            Component
#>  Cycle         6.087
#>  Seasonal     80.528
#>  Irregular     0.965
#>  TD & Hol.     3.590
#>  Others        8.102
#>  Total        99.271
#> 
#> Combined test in the entire series
#>  Non parametric tests for stable seasonality
#>                                                           P.value
#>    Kruskall-Wallis test                                       0.00
#>    Test for the presence of seasonality assuming stability    0.00
#>    Evolutive seasonality test                                 0.01
#>  
#>  Identifiable seasonality present
#> 
#> Residual seasonality tests
#>                                       P.value
#>  qs test on sa                          1.000
#>  qs test on i                           1.000
#>  f-test on sa (seasonal dummies)        1.000
#>  f-test on i (seasonal dummies)         1.000
#>  Residual seasonality (entire series)   1.000
#>  Residual seasonality (last 3 years)    0.974
#>  f-test on sa (td)                      0.152
#>  f-test on i (td)                       0.224
#> 
#> 
#> Additional output variables

# Equivalent to:
mysa1 <- tramoseats(myseries, spec = "RSAfull")
mysa1
#> RegARIMA
#> y = regression model + arima (2, 1, 0, 0, 1, 1)
#> Log-transformation: no
#> Coefficients:
#>           Estimate Std. Error
#> Phi(1)      0.4032      0.051
#> Phi(2)      0.2883      0.051
#> BTheta(1)  -0.6641      0.042
#> 
#>             Estimate Std. Error
#> Week days     0.6994      0.032
#> Leap year     2.3231      0.690
#> Easter [6]   -2.5154      0.436
#> AO (5-2011)  13.4679      1.787
#> TC (4-2020) -22.2128      2.205
#> TC (3-2020) -21.0391      2.217
#> AO (5-2000)   6.7386      1.794
#> 
#> 
#> Residual standard error: 2.326 on 348 degrees of freedom
#> Log likelihood = -816.1, aic =  1654 aicc =  1655, bic(corrected for length) = 1.852
#> 
#> 
#> 
#> Decomposition
#> Model
#> AR :  1 + 0.403230 B + 0.288342 B^2 
#> D :  1 - B - B^12 + B^13 
#> MA :  1 - 0.664088 B^12 
#> 
#> 
#> SA
#> AR :  1 + 0.403230 B + 0.288342 B^2 
#> D :  1 - 2.000000 B + B^2 
#> MA :  1 - 0.970348 B + 0.005940 B^2 - 0.005813 B^3 + 0.003576 B^4 
#> Innovation variance:  0.7043507 
#> 
#> Trend
#> D :  1 - 2.000000 B + B^2 
#> MA :  1 + 0.033519 B - 0.966481 B^2 
#> Innovation variance:  0.06093642 
#> 
#> Seasonal
#> D :  1 + B + B^2 + B^3 + B^4 + B^5 + B^6 + B^7 + B^8 + B^9 + B^10 + B^11 
#> MA :  1 + 1.328957 B + 1.105787 B^2 + 1.185470 B^3 + 1.067845 B^4 + 0.820748 B^5 + 0.632456 B^6 + 0.404457 B^7 + 0.245256 B^8 + 0.001615 B^9 - 0.055617 B^10 - 0.203557 B^11 
#> Innovation variance:  0.04290744 
#> 
#> Transitory
#> AR :  1 + 0.403230 B + 0.288342 B^2 
#> MA :  1 - 0.260079 B - 0.739921 B^2 
#> Innovation variance:  0.05287028 
#> 
#> Irregular
#> Innovation variance:  0.2032994 
#> 
#> 
#> 
#> Final
#> Last observed values
#>              y        sa        t           s            i
#> Jan 2020 101.0 102.93775 103.0182  -1.9377453  -0.08043801
#> Feb 2020 100.1 103.53944 103.2312  -3.4394383   0.30818847
#> Mar 2020  91.8  82.47698 103.4998   9.3230241 -21.02286361
#> Apr 2020  66.7  65.77310 103.9608   0.9268969 -38.18766871
#> May 2020  73.7  79.43342 104.7269  -5.7334221 -25.29345247
#> Jun 2020  98.2  88.07766 105.3319  10.1223443 -17.25422206
#> Jul 2020  97.4  92.71048 105.4216   4.6895154 -12.71111705
#> Aug 2020  71.7  97.32129 104.9801 -25.6212858  -7.65880696
#> Sep 2020 104.7  97.44274 104.0807   7.2572622  -6.63793072
#> Oct 2020 106.7  98.20925 103.1711   8.4907485  -4.96183772
#> Nov 2020 101.6  99.98044 102.4813   1.6195550  -2.50088282
#> Dec 2020  96.6  98.99458 101.9735  -2.3945790  -2.97892307
#> 
#> Forecasts:
#>                y_f     sa_f      t_f        s_f         i_f
#> Jan 2021  93.22264 100.1984 101.7578  -6.975740 -1.55946363
#> Feb 2021  96.81455 100.8845 101.7113  -4.069924 -0.82679910
#> Mar 2021 111.72198 100.8668 101.6647  10.855228 -0.79795880
#> Apr 2021 102.76178 101.0716 101.6181   1.690178 -0.54654378
#> May 2021  95.52744 101.2474 101.5716  -5.719910 -0.32422597
#> Jun 2021 111.44221 101.2711 101.5250  10.171157 -0.25395653
#> Jul 2021 103.57813 101.2947 101.4784   2.283395 -0.18370915
#> Aug 2021  78.21363 101.3135 101.4319 -23.099833 -0.11841662
#> Sep 2021 108.57631 101.3000 101.3853   7.276282 -0.08528380
#> Oct 2021 107.32040 101.2771 101.3387   6.043321 -0.06166933
#> Nov 2021 105.33458 101.2505 101.2922   4.084088 -0.04168414
#> Dec 2021  98.79675 101.2164 101.2456  -2.419656 -0.02920922
#> 
#> 
#> Diagnostics
#> Relative contribution of the components to the stationary
#> portion of the variance in the original series,
#> after the removal of the long term trend
#>  Trend computed by Hodrick-Prescott filter (cycle length = 8.0 years)
#>            Component
#>  Cycle         6.087
#>  Seasonal     80.528
#>  Irregular     0.965
#>  TD & Hol.     3.590
#>  Others        8.102
#>  Total        99.271
#> 
#> Combined test in the entire series
#>  Non parametric tests for stable seasonality
#>                                                           P.value
#>    Kruskall-Wallis test                                       0.00
#>    Test for the presence of seasonality assuming stability    0.00
#>    Evolutive seasonality test                                 0.01
#>  
#>  Identifiable seasonality present
#> 
#> Residual seasonality tests
#>                                       P.value
#>  qs test on sa                          1.000
#>  qs test on i                           1.000
#>  f-test on sa (seasonal dummies)        1.000
#>  f-test on i (seasonal dummies)         1.000
#>  Residual seasonality (entire series)   1.000
#>  Residual seasonality (last 3 years)    0.974
#>  f-test on sa (td)                      0.152
#>  f-test on i (td)                       0.224
#> 
#> 
#> Additional output variables

#Example 2
var1 <- ts(rnorm(length(myseries))*10, start = start(myseries), frequency = 12)
var2 <- ts(rnorm(length(myseries))*100, start = start(myseries), frequency = 12)
var <- ts.union(var1, var2)
myspec2 <- tramoseats_spec(myspec, tradingdays.mauto = "Unused",
                           tradingdays.option = "WorkingDays",
                           easter.type = "Standard",
                           automdl.enabled = FALSE, arima.mu = TRUE,
                           usrdef.varEnabled = TRUE, usrdef.var = var)
s_preVar(myspec2)
#> $series
#>                  var1         var2
#> Jan 1990 -12.53055561  116.7948978
#> Feb 1990  17.65028630   76.9885462
#> Mar 1990  -1.59322027  -16.3115808
#> Apr 1990   8.98874217  127.5265346
#> May 1990  -7.04995332   18.0887984
#> Jun 1990  11.26896570  147.4360522
#> Jul 1990 -19.74322214 -151.7434724
#> Aug 1990 -12.44772830   30.4400356
#> Sep 1990  10.31250388   10.7467387
#> Oct 1990   5.79097050 -122.4792573
#> Nov 1990 -10.37890010   44.8519979
#> Dec 1990  15.61622325   50.8070951
#> Jan 1991   1.01959622   35.0212641
#> Feb 1991  23.24238302   75.8213674
#> Mar 1991  23.25851550   29.0928722
#> Apr 1991 -12.93149956    2.2859592
#> May 1991  -0.45018855  -20.8143110
#> Jun 1991   1.95694234  -26.3611625
#> Jul 1991   4.80623395 -198.4135796
#> Aug 1991  20.17342464  -35.7620220
#> Sep 1991  11.95608651  -45.4297352
#> Oct 1991   6.56575520   28.6157701
#> Nov 1991  10.26297846  -28.9179390
#> Dec 1991   5.20192659   51.1904574
#> Jan 1992  11.20615649 -110.4334548
#> Feb 1992   3.99897655  -22.2474789
#> Mar 1992  -9.84527658 -145.2151487
#> Apr 1992  -5.02562184   39.9298770
#> May 1992   9.87148440  142.8571193
#> Jun 1992  21.91481010  -48.2140994
#> Jul 1992  -1.65042212   99.2388183
#> Aug 1992  -6.86040800 -116.3700651
#> Sep 1992   9.41399410  162.0789124
#> Oct 1992  -1.64042843  -10.7448152
#> Nov 1992 -13.02339410  -77.3206773
#> Dec 1992  -7.23484004  -73.6278805
#> Jan 1993  13.90088740   81.5706680
#> Feb 1993   6.81840626  220.3036444
#> Mar 1993   4.68260280  -67.1046628
#> Apr 1993   4.20921089  -42.1589604
#> May 1993  -8.00331265  -77.7749125
#> Jun 1993  -4.88457510   56.1542375
#> Jul 1993   5.39004516 -222.2507056
#> Aug 1993  14.35171017  -69.5413671
#> Sep 1993  -2.61838719  -38.3549957
#> Oct 1993 -14.18623721  205.8566983
#> Nov 1993  -5.13792720 -110.7988264
#> Dec 1993   7.72301225  -95.5938774
#> Jan 1994  14.03682339  -63.5768417
#> Feb 1994  -0.15804912   76.6757452
#> Mar 1994 -10.23289556   68.6958102
#> Apr 1994 -21.16392160  172.1426693
#> May 1994   1.50371437   85.1309252
#> Jun 1994  -5.20871198   42.9908280
#> Jul 1994  -9.05454844 -105.5277738
#> Aug 1994  -7.49986903   -4.5880971
#> Sep 1994  -7.86576021  -13.1881384
#> Oct 1994  -5.59681870  -31.9463558
#> Nov 1994 -13.90851305   47.3606163
#> Dec 1994  -2.82630602   81.2516099
#> Jan 1995  -4.80284997   25.6612328
#> Feb 1995  -9.67621014 -214.8765835
#> Mar 1995  17.77940980   69.0108551
#> Apr 1995  -0.69089037 -177.2443831
#> May 1995  -4.26188249   54.6294039
#> Jun 1995 -22.51403727    1.8945820
#> Jul 1995  -9.14170952  -74.8702215
#> Aug 1995  -8.00524582  -79.4321035
#> Sep 1995  -7.53305904   30.0784394
#> Oct 1995   6.60649173    5.4665853
#> Nov 1995  17.27695639   36.4229108
#> Dec 1995   7.82678579 -116.5186698
#> Jan 1996  -7.81818406   26.0555826
#> Feb 1996  -1.25797549 -241.7116277
#> Mar 1996  10.15236070  114.9085017
#> Apr 1996   2.94676272  120.6579247
#> May 1996  -2.96458790  -43.1982134
#> Jun 1996  -8.22289822   10.6856739
#> Jul 1996  16.91546077   48.6195719
#> Aug 1996 -14.76545705 -155.3458324
#> Sep 1996   9.29693563 -108.3142387
#> Oct 1996  -6.13832093  -51.6012028
#> Nov 1996   6.17598091  -20.7770980
#> Dec 1996  -8.30615177   90.7281411
#> Jan 1997 -11.33375927   81.1425127
#> Feb 1997  -1.56378319  -99.1193254
#> Mar 1997  -2.43091747  -45.4306958
#> Apr 1997 -11.29264413  -31.5728538
#> May 1997  -0.62192485 -100.6333083
#> Jun 1997   4.87082631 -101.6594660
#> Jul 1997  -0.54636953  202.9964782
#> Aug 1997  -1.98624209  -68.7638434
#> Sep 1997 -14.53375000 -158.7906854
#> Oct 1997   1.98434624  101.6938102
#> Nov 1997 -13.91001690  -72.3102186
#> Dec 1997 -22.44235104 -145.3485040
#> Jan 1998  -2.31792440 -214.0815482
#> Feb 1998  -6.86551360   13.4854427
#> Mar 1998  -4.82915280   66.1997776
#> Apr 1998 -22.43508266   49.4613170
#> May 1998  -3.81078571 -152.6643655
#> Jun 1998   1.16047733  -11.0216005
#> Jul 1998   8.92492885  246.8741282
#> Aug 1998  18.08520401  -56.3543434
#> Sep 1998  10.79663512 -144.5853422
#> Oct 1998  14.52055280  -47.6555776
#> Nov 1998  25.56923589  101.4600468
#> Dec 1998  10.72728070  -11.8020034
#> Jan 1999 -11.78914989  -35.4321844
#> Feb 1999  10.75417132   28.7255843
#> Mar 1999   0.53855088    1.8012616
#> Apr 1999  -2.34343833  -89.8423976
#> May 1999   9.50759734  144.4736492
#> Jun 1999   0.73021934  -53.7799146
#> Jul 1999   6.63527998  -48.2359998
#> Aug 1999  -8.16198742  -73.5619613
#> Sep 1999   2.95544263   -1.5235256
#> Oct 1999  13.46357662  -28.5060838
#> Nov 1999  -2.80015436  -77.0895994
#> Dec 1999  -0.63043628 -191.1522944
#> Jan 2000  -1.32833831   17.7899655
#> Feb 2000   6.29361770   19.6320685
#> Mar 2000  -6.41231532    5.0044155
#> Apr 2000  -1.04018599 -104.5274438
#> May 2000 -13.88668827  -13.6682386
#> Jun 2000   4.37214206  122.7500609
#> Jul 2000   3.15862087  -19.3865193
#> Aug 2000   1.94610535 -199.3071105
#> Sep 2000  -4.55762127  -42.9905670
#> Oct 2000   8.12534989  -65.1916325
#> Nov 2000   2.75042593 -132.2755316
#> Dec 2000   0.06009411  -61.1002356
#> Jan 2001  20.10186412  -43.3484772
#> Feb 2001   3.13808823   22.1131620
#> Mar 2001  -8.46162712   41.4635297
#> Apr 2001  -1.34641045  100.3519632
#> May 2001  14.70832200 -262.6042237
#> Jun 2001 -14.75125736  -87.3534926
#> Jul 2001   2.04499683  -77.3710833
#> Aug 2001  -3.41768421   59.3058550
#> Sep 2001  18.42157648   45.3563341
#> Oct 2001  -2.05909535  -48.9626711
#> Nov 2001  15.02231278  -66.6085502
#> Dec 2001   2.42188060 -108.9654228
#> Jan 2002   0.53455720 -104.0906952
#> Feb 2002  -1.25146310   50.1606680
#> Mar 2002   2.47787238    4.1353765
#> Apr 2002  -6.26612578   -5.3081681
#> May 2002   6.82877534 -152.7399081
#> Jun 2002   5.89606056  -16.3568520
#> Jul 2002  -8.14967320 -213.5094918
#> Aug 2002  -3.45798987  -13.6833591
#> Sep 2002   0.56529047 -290.4220640
#> Oct 2002  -5.66766181   33.7012645
#> Nov 2002  -0.42837457   76.4510656
#> Dec 2002 -12.81559297  -66.9378190
#> Jan 2003   9.67582242  -16.0968872
#> Feb 2003  10.29048853  150.7261029
#> Mar 2003 -21.66425254  -12.1693844
#> Apr 2003  -3.03348223  -24.3414776
#> May 2003   1.79268039   70.8157194
#> Jun 2003  14.27395820  -48.0039667
#> Jul 2003  -6.19946595  -31.6551268
#> Aug 2003  -1.31842450   51.0471244
#> Sep 2003   2.67551749  -26.6264354
#> Oct 2003 -14.56778518   63.6432097
#> Nov 2003   2.34340520 -101.3955594
#> Dec 2003  -9.51528054   93.2230747
#> Jan 2004  18.98439401  -65.0788332
#> Feb 2004 -10.42770546   43.6178180
#> Mar 2004 -13.33746286  -16.4089402
#> Apr 2004  17.64724810  126.8656386
#> May 2004   5.06063430   41.5432504
#> Jun 2004  -6.55292217   -4.8104283
#> Jul 2004   6.67508839   19.8292951
#> Aug 2004  13.72876146  -38.8687305
#> Sep 2004   5.94581979  -45.2232286
#> Oct 2004   8.09307437  -13.9421427
#> Nov 2004  -9.29351716 -132.5197658
#> Dec 2004  -9.68882573   75.4069518
#> Jan 2005  -5.63483049  135.7852830
#> Feb 2005  18.88488707 -122.0784861
#> Mar 2005  -1.16769607  -56.7918662
#> Apr 2005  -0.49778439 -118.8849569
#> May 2005   4.12530895 -101.2275885
#> Jun 2005   3.39006216  -43.2531486
#> Jul 2005  -2.19463937   34.5706392
#> Aug 2005  -2.79921977   19.0927596
#> Sep 2005  -1.84466622  128.7488578
#> Oct 2005 -11.31041190  -21.3504255
#> Nov 2005   5.99068143   59.3561305
#> Dec 2005  -3.45024460 -181.5799874
#> Jan 2006   3.28683628  -46.0524573
#> Feb 2006  -0.02001793   74.6337982
#> Mar 2006 -16.43640470   89.8995877
#> Apr 2006   8.30144580 -115.5462161
#> May 2006  13.11300782  -28.2423821
#> Jun 2006  -7.25708977   -0.3256871
#> Jul 2006  -3.88345065  151.5028276
#> Aug 2006 -10.42408354   30.9380270
#> Sep 2006   7.39965537  -46.0958821
#> Oct 2006  -3.79227989   29.3447573
#> Nov 2006   8.55040406    7.0972006
#> Dec 2006   9.29726811 -231.3759365
#> Jan 2007  -5.11420306   19.2706032
#> Feb 2007   5.75606727  -35.2441451
#> Mar 2007 -11.79760738 -153.3292787
#> Apr 2007   8.73922726 -173.4069209
#> May 2007   7.52654962   14.1892735
#> Jun 2007   6.31952946  -21.9599601
#> Jul 2007   4.89051671   59.1564494
#> Aug 2007   4.93466172   24.0247909
#> Sep 2007 -20.24668739  -37.2564160
#> Oct 2007  -1.15346633   26.4545865
#> Nov 2007   4.02961199   65.1544488
#> Dec 2007 -13.29553215  -41.8319774
#> Jan 2008   8.50032275 -207.8760627
#> Feb 2008  11.05681923   59.0955041
#> Mar 2008   4.04141906  -70.5640744
#> Apr 2008  -1.23141511   98.6688400
#> May 2008   4.48847720    3.2359045
#> Jun 2008  20.68153748  -49.6043573
#> Jul 2008 -12.49536842  167.3249059
#> Aug 2008  -2.19531175 -105.1266614
#> Sep 2008  10.32002706    2.8015821
#> Oct 2008 -15.82876585   52.6890091
#> Nov 2008   0.84967784  127.0786920
#> Dec 2008  12.10794619  -58.7592446
#> Jan 2009  -0.23462572  -43.0471444
#> Feb 2009   0.84693918   -2.2966263
#> Mar 2009  -3.25065508    7.4873923
#> Apr 2009   5.05923564 -208.9995616
#> May 2009   4.15272046  102.3897173
#> Jun 2009 -11.77413897   62.3240132
#> Jul 2009   0.33445330 -136.7330008
#> Aug 2009  -6.79873381    4.4589523
#> Sep 2009   9.77814031   36.6273799
#> Oct 2009  17.72477385  -17.8469697
#> Nov 2009   2.77933293  210.1677593
#> Dec 2009  -4.81019306  -24.2409658
#> Jan 2010 -17.91060602    1.1717215
#> Feb 2010   5.30663702 -277.8433689
#> Mar 2010 -11.24766175   27.4491395
#> Apr 2010   0.40226151  -62.2731928
#> May 2010 -11.87967396 -102.7831717
#> Jun 2010  22.48831114   72.8990109
#> Jul 2010  15.53161749  -39.2461437
#> Aug 2010   3.23021948   35.7845575
#> Sep 2010   0.22759699  -75.5189860
#> Oct 2010  -2.49427874    6.6689713
#> Nov 2010 -21.72319120   25.7355650
#> Dec 2010 -13.39659118   -9.0963056
#> Jan 2011  -9.80485754  -73.0508027
#> Feb 2011 -17.92780676  -39.5841246
#> Mar 2011   5.22812809 -141.5808515
#> Apr 2011 -15.91328479  -10.8938918
#> May 2011   8.06263133    7.4299910
#> Jun 2011  -6.83813068   45.0190145
#> Jul 2011   3.34388057   38.7345818
#> Aug 2011   9.43006421  -25.8295014
#> Sep 2011  -8.98387674  152.3490603
#> Oct 2011   7.67335868   55.1343438
#> Nov 2011   0.92338676   32.9901773
#> Dec 2011  -3.51696026   17.2922695
#> Jan 2012   1.15373005   42.6641536
#> Feb 2012  -1.43261353  -81.3699585
#> Mar 2012 -24.19820346   65.1355094
#> Apr 2012 -11.63794035   91.9981796
#> May 2012   1.03426653   39.0101788
#> Jun 2012  -1.26143326   95.6724098
#> Jul 2012  -1.41743410  -16.9973563
#> Aug 2012   9.10437035  -37.9977916
#> Sep 2012  14.77617914   14.4207957
#> Oct 2012  16.46242603  -71.8284089
#> Nov 2012  -1.79993025   20.6108648
#> Dec 2012   9.76856385  -36.7334361
#> Jan 2013  -1.86602735   78.8442877
#> Feb 2013  -0.34098393  -31.0952795
#> Mar 2013  14.88732203  -85.9140099
#> Apr 2013  -1.89839298  108.5279663
#> May 2013 -10.89309617  -78.4779324
#> Jun 2013   3.71089482 -122.0960234
#> Jul 2013 -10.27770114 -105.6691432
#> Aug 2013   0.14915848  -99.6890554
#> Sep 2013  -5.20298562  -67.2605085
#> Oct 2013  -0.52244428   66.5268367
#> Nov 2013 -14.35079571  223.6077683
#> Dec 2013  -3.27979065  -60.1798169
#> Jan 2014 -12.85347619  -29.1617742
#> Feb 2014  -4.25537239  -84.0974862
#> Mar 2014   2.57475661  203.1699515
#> Apr 2014   2.01319396   42.9372125
#> May 2014   4.82077401   81.1017521
#> Jun 2014   5.06636590  -17.4299949
#> Jul 2014  -5.26691357  -31.6371483
#> Aug 2014  -5.64773980  -49.3001895
#> Sep 2014   0.40398035   19.0778474
#> Oct 2014  -2.00781380 -110.3744984
#> Nov 2014  -9.04217194  -10.6413314
#> Dec 2014   1.66655524  145.8992713
#> Jan 2015  -5.24284783  -30.7474298
#> Feb 2015   0.17563903   75.7181411
#> Mar 2015   9.48517187 -171.0825390
#> Apr 2015   2.70265784   59.5309608
#> May 2015  -1.60941404 -206.7966650
#> Jun 2015  19.65199507   -8.5739756
#> Jul 2015   3.95548042    3.2286550
#> Aug 2015   8.73719370   28.9686397
#> Sep 2015   4.72324156   80.8938069
#> Oct 2015 -14.85226449   32.6262471
#> Nov 2015  -8.36162299 -170.3857479
#> Dec 2015  -6.46269212   52.5504589
#> Jan 2016  -0.47437037  -80.3033850
#> Feb 2016   1.67759989  -23.7655721
#> Mar 2016  -0.99738669   85.5349059
#> Apr 2016   0.85996455  -46.9487045
#> May 2016  -3.72574031   11.8012784
#> Jun 2016   1.81332543  124.7441555
#> Jul 2016  -9.06806411  -68.8397299
#> Aug 2016   5.91157152 -138.3569575
#> Sep 2016   7.92513233   -4.2932415
#> Oct 2016   0.76872383  -20.9234230
#> Nov 2016  -0.67837199 -146.6993454
#> Dec 2016   4.33288047  223.5778380
#> Jan 2017   0.49095403  -62.5144963
#> Feb 2017  -0.32800048 -116.7913785
#> Mar 2017  -5.10924776   14.9528831
#> Apr 2017   3.56430539   86.1319900
#> May 2017   4.17946136 -104.6203407
#> Jun 2017   5.79205261   17.2260011
#> Jul 2017 -14.75158654  -30.7020751
#> Aug 2017  13.23805231   90.3345610
#> Sep 2017  10.30621466   98.5248694
#> Oct 2017   3.17373893  164.3828484
#> Nov 2017 -11.11903788   81.4559724
#> Dec 2017   6.21211169   82.5113161
#> Jan 2018  18.09108552  -34.5773922
#> Feb 2018  11.13986006   41.1147335
#> Mar 2018   4.65350534  -64.3214383
#> Apr 2018 -10.68629729   94.2059477
#> May 2018   2.55940284   46.9591784
#> Jun 2018  -7.77218934  -66.2112238
#> Jul 2018  -9.50318237  -30.9471102
#> Aug 2018  12.30516332   79.4574264
#> Sep 2018  -2.90321330  -91.4850956
#> Oct 2018 -12.45249585  -46.5520309
#> Nov 2018  -9.25110623   81.9669363
#> Dec 2018  -3.51758271  152.1035738
#> Jan 2019  -0.41630828   26.5354790
#> Feb 2019   7.29297422   61.9066940
#> Mar 2019   2.93403029   47.1080837
#> Apr 2019  35.86945476   46.3144213
#> May 2019   7.55743006  -16.0161363
#> Jun 2019   4.00127303   -3.5685472
#> Jul 2019   8.29345713  -57.4684816
#> Aug 2019  -3.05136243   84.5350017
#> Sep 2019   7.10103322  -58.1766123
#> Oct 2019   4.38613817  -50.2357106
#> Nov 2019   3.58223697  108.8076265
#> Dec 2019  -1.24237651  -39.2953019
#> Jan 2020  -6.93216085  -66.0461119
#> Feb 2020   5.74346528  -14.9025127
#> Mar 2020  -2.17159515  -87.5485298
#> Apr 2020  30.37581163  169.9001571
#> May 2020 -15.91667131    6.8190262
#> Jun 2020  -6.73689236   53.3187580
#> Jul 2020   7.28572805   -8.0948993
#> Aug 2020 -11.51562235  244.6781428
#> Sep 2020 -11.50775213   38.3899034
#> Oct 2020  -1.32075277 -105.2171578
#> Nov 2020  -5.81046358 -172.2233827
#> Dec 2020  16.61350032  -63.0819250
#> 
#> $description
#>           type coeff
#> var1 Undefined    NA
#> var2 Undefined    NA
#> 
mysa2 <- tramoseats(myseries, myspec2,
                    userdefined = c("decomposition.sa_lin_f",
                                    "decomposition.sa_lin_e"))
mysa2
#> RegARIMA
#> y = regression model + arima (0, 1, 1, 0, 1, 1)
#> Log-transformation: no
#> Coefficients:
#>           Estimate Std. Error
#> Theta(1)   -0.6217      0.043
#> BTheta(1)  -0.6693      0.042
#> 
#>                Estimate Std. Error
#> Mean          1.388e-03      0.016
#> r.var1        2.032e-03      0.011
#> r.var2        7.035e-04      0.001
#> Monday        5.799e-01      0.239
#> Tuesday       8.439e-01      0.239
#> Wednesday     1.068e+00      0.240
#> Thursday      3.851e-02      0.240
#> Friday        8.572e-01      0.242
#> Saturday     -1.549e+00      0.238
#> Leap year     2.161e+00      0.727
#> Easter [6]   -2.175e+00      0.496
#> TC (4-2020)  -2.133e+01      2.238
#> TC (3-2020)  -2.119e+01      2.223
#> AO (5-2011)   1.287e+01      1.916
#> LS (11-2008) -1.249e+01      1.655
#> 
#> 
#> Residual standard error: 2.241 on 341 degrees of freedom
#> Log likelihood = -802.9, aic =  1642 aicc =  1644, bic(corrected for length) = 1.893
#> 
#> 
#> 
#> Decomposition
#> Model
#> D :  1 - B - B^12 + B^13 
#> MA :  1 - 0.621691 B - 0.669330 B^12 + 0.416116 B^13 
#> 
#> 
#> SA
#> D :  1 - 2.000000 B + B^2 
#> MA :  1 - 1.591988 B + 0.604331 B^2 
#> Innovation variance:  0.7134019 
#> 
#> Trend
#> D :  1 - 2.000000 B + B^2 
#> MA :  1 + 0.032818 B - 0.967182 B^2 
#> Innovation variance:  0.02522463 
#> 
#> Seasonal
#> D :  1 + B + B^2 + B^3 + B^4 + B^5 + B^6 + B^7 + B^8 + B^9 + B^10 + B^11 
#> MA :  1 + 0.843770 B + 0.604408 B^2 + 0.338179 B^3 + 0.083129 B^4 - 0.136631 B^5 - 0.307818 B^6 - 0.425620 B^7 - 0.491945 B^8 - 0.514346 B^9 - 0.505950 B^10 - 0.487176 B^11 
#> Innovation variance:  0.03081912 
#> 
#> Irregular
#> Innovation variance:  0.4555274 
#> 
#> 
#> 
#> Final
#> Last observed values
#>              y        sa        t           s             i
#> Jan 2020 101.0 102.81851 103.3050  -1.8185112  -0.486470495
#> Feb 2020 100.1 103.40318 103.4075  -3.3031783  -0.004340668
#> Mar 2020  91.8  82.29661 103.5385   9.5033890 -21.241901161
#> Apr 2020  66.7  66.06809 103.7556   0.6319142 -37.687541289
#> May 2020  73.7  79.34590 104.1076  -5.6458990 -24.761732349
#> Jun 2020  98.2  88.14489 104.4019  10.0551101 -16.257054491
#> Jul 2020  97.4  92.97395 104.4587   4.4260520 -11.484778092
#> Aug 2020  71.7  97.35139 104.2406 -25.6513919  -6.889254716
#> Sep 2020 104.7  97.14200 103.8112   7.5580020  -6.669192528
#> Oct 2020 106.7  98.51739 103.3804   8.1826079  -4.863017170
#> Nov 2020 101.6 100.22161 103.0371   1.3783873  -2.815453896
#> Dec 2020  96.6  99.16099 102.7914  -2.5609868  -3.630382907
#> 
#> Forecasts:
#>                y_f     sa_f      t_f        s_f         i_f
#> Jan 2021  94.94239 101.2431 102.7025  -6.384568 -1.45941514
#> Feb 2021  97.76857 101.6750 102.6965  -3.955806 -1.02159060
#> Mar 2021 113.34558 101.9756 102.6907  11.294470 -0.71511342
#> Apr 2021 103.58903 102.1844 102.6849   1.443977 -0.50057939
#> May 2021  96.50160 102.3289 102.6793  -5.901187 -0.35040557
#> Jun 2021 113.08768 102.4285 102.6738  10.609817 -0.24528390
#> Jul 2021 104.43952 102.4967 102.6684   1.863487 -0.17169873
#> Aug 2021  79.35314 102.5429 102.6631 -23.174022 -0.12018911
#> Sep 2021 109.38591 102.5738 102.6580   6.750815 -0.08413238
#> Oct 2021 108.97962 102.5940 102.6529   6.296152 -0.05889266
#> Nov 2021 106.76502 102.6067 102.6480   4.072512 -0.04122487
#> Dec 2021 100.05011 102.6143 102.6431  -2.598606 -0.02885741
#> 
#> 
#> Diagnostics
#> Relative contribution of the components to the stationary
#> portion of the variance in the original series,
#> after the removal of the long term trend
#>  Trend computed by Hodrick-Prescott filter (cycle length = 8.0 years)
#>            Component
#>  Cycle         1.828
#>  Seasonal     58.835
#>  Irregular     0.999
#>  TD & Hol.     2.524
#>  Others       33.791
#>  Total        97.976
#> 
#> Combined test in the entire series
#>  Non parametric tests for stable seasonality
#>                                                           P.value
#>    Kruskall-Wallis test                                      0.000
#>    Test for the presence of seasonality assuming stability   0.000
#>    Evolutive seasonality test                                0.068
#>  
#>  Identifiable seasonality present
#> 
#> Residual seasonality tests
#>                                       P.value
#>  qs test on sa                          1.000
#>  qs test on i                           1.000
#>  f-test on sa (seasonal dummies)        1.000
#>  f-test on i (seasonal dummies)         1.000
#>  Residual seasonality (entire series)   1.000
#>  Residual seasonality (last 3 years)    0.961
#>  f-test on sa (td)                      0.929
#>  f-test on i (td)                       1.000
#> 
#> 
#> Additional output variables
#> Names of additional variables (2):
#> decomposition.sa_lin_f, decomposition.sa_lin_e
plot(mysa2)


plot(mysa2$regarima)






plot(mysa2$decomposition)

# }