Estimate bias using t-test and augmented t-test
Arguments
- revisions.view
mts object. Vertical or diagonal view of the
get_revisions()
output- na.zero
Boolean whether missing values should be considered as 0 or rather as data not (yet) available (the default).
Examples
## Simulated data
df_long <- simulate_long(
n_period = 10L * 4L,
n_revision = 5L,
periodicity = 4L,
start_period = as.Date("2010-01-01")
)
## Create vintage and test
vintages <- create_vintages(df_long, periodicity = 4)
revisions <- get_revisions(vintages, gap = 1)
bias(revisions[["diagonal_view"]])
#> N estimate stderr tstat pvalue
#> [Release[2]]-[Release[1]] 28 -0.41501583 0.3493686 -1.1879026 0.2452168
#> [Release[3]]-[Release[2]] 24 0.13813280 0.2511954 0.5499017 0.5876876
#> [Release[4]]-[Release[3]] 21 -0.02999737 0.1640410 -0.1828651 0.8567449
#> [Release[5]]-[Release[4]] 6 -0.01251869 0.1212942 -0.1032093 0.9218086
#> ar(1) stderr.adjusted tstat.adjusted
#> [Release[2]]-[Release[1]] 0.04507499 0.36548784 -1.1355120
#> [Release[3]]-[Release[2]] -0.23610716 0.19746943 0.6995148
#> [Release[4]]-[Release[3]] -0.19036531 0.13528724 -0.2217309
#> [Release[5]]-[Release[4]] -0.27470527 0.09149398 -0.1368253
#> pvalue.adjusted
#> [Release[2]]-[Release[1]] 0.2666867
#> [Release[3]]-[Release[2]] 0.4883993
#> [Release[4]]-[Release[3]] 0.8259834
#> [Release[5]]-[Release[4]] 0.8937461