Estimate bias using t-test and augmented t-test
Arguments
- revisions.view
mts object. Vertical or diagonal view of the
get_revisions()
output- na.zero
Boolean whether missing values should be considered as 0 or rather as data not (yet) available (the default).
Examples
## Simulated data
df_long <- simulate_long(
n_period = 10L * 4L,
n_revision = 5L,
periodicity = 4L,
start_period = as.Date("2010-01-01")
)
## Create vintage and test
vintages <- create_vintages(df_long, periodicity = 4)
revisions <- get_revisions(vintages, gap = 1)
bias(revisions[["diagonal_view"]])
#> N estimate stderr tstat pvalue
#> [Release[2]]-[Release[1]] 24 0.68520075 0.51299572 1.3356851 0.19472020
#> [Release[3]]-[Release[2]] 16 -0.53245504 0.22177933 -2.4008325 0.02977643
#> [Release[4]]-[Release[3]] 14 0.09985965 0.09404693 1.0618066 0.30765162
#> [Release[5]]-[Release[4]] 6 0.04276859 0.05596890 0.7641493 0.47926710
#> ar(1) stderr.adjusted tstat.adjusted
#> [Release[2]]-[Release[1]] 0.37790842 0.76347841 0.8974723
#> [Release[3]]-[Release[2]] 0.18147355 0.26645061 -1.9983255
#> [Release[4]]-[Release[3]] -0.04636472 0.08978302 1.1122330
#> [Release[5]]-[Release[4]] -0.44250648 0.03479427 1.2291848
#> pvalue.adjusted
#> [Release[2]]-[Release[1]] 0.38897309
#> [Release[3]]-[Release[2]] 0.07080973
#> [Release[4]]-[Release[3]] 0.28314198
#> [Release[5]]-[Release[4]] 0.23730793