Skip to contents

Linear regression model of the revisions (R) on a preliminary vintage (P)

Usage

efficiencyModel1(vintages.view, gap = 1, na.zero = FALSE)

Arguments

vintages.view

mts object. Vertical or diagonal view of the create_vintages() output

gap

Integer. Gap to consider between each vintages. Default is 1 which means that revisions are calculated and tested for each vintages consecutively.

na.zero

Boolean whether missing values should be considered as 0 or rather as data not (yet) available (the default).

Examples


## Simulated data
df_long <- simulate_long(
    n_period = 10L * 4L,
    n_revision = 5L,
    periodicity = 4L,
    start_period = as.Date("2010-01-01")
)

## Create vintage and test
vintages <- create_vintages(df_long, periodicity = 4L)
efficiencyModel1(vintages[["diagonal_view"]])
#>                            N          R2         F intercept.estimate
#> [Release[2]]-[Release[1]] 28 0.008492489 0.2226960        0.672703365
#> [Release[3]]-[Release[2]] 27 0.013641984 0.3457665       -0.549363302
#> [Release[4]]-[Release[3]] 21 0.035302589 0.6952949        0.482883828
#> [Release[5]]-[Release[4]]  9 0.001704290 0.0119504       -0.001229736
#>                           intercept.stderr intercept.pvalue slope.estimate
#> [Release[2]]-[Release[1]]        1.4514313        0.6468799   -0.024457762
#> [Release[3]]-[Release[2]]        0.9049448        0.5492800    0.019082885
#> [Release[4]]-[Release[3]]        0.4144467        0.2583869   -0.013385026
#> [Release[5]]-[Release[4]]        0.3895236        0.9975692   -0.002304159
#>                           slope.stderr slope.pvalue   skewness   kurtosis
#> [Release[2]]-[Release[1]]   0.05182753    0.6409299 -0.5542991  0.7361698
#> [Release[3]]-[Release[2]]   0.03245283    0.5617942 -0.9471668  1.3265725
#> [Release[4]]-[Release[3]]   0.01605221    0.4147298  0.4652984 -0.1666573
#> [Release[5]]-[Release[4]]   0.02107760    0.9160182 -0.7282686 -0.4068540
#>                           JarqueBera.value JarqueBera.pvalue BreuschPagan.R2
#> [Release[2]]-[Release[1]]        1.9923030        0.36929795      0.00661689
#> [Release[3]]-[Release[2]]        5.7939858        0.05518893      0.03750373
#> [Release[4]]-[Release[3]]        0.7448209        0.68907136      0.01951256
#> [Release[5]]-[Release[4]]        0.7623435        0.68306055      0.01512203
#>                           BreuschPagan.value BreuschPagan.pvalue   White.R2
#> [Release[2]]-[Release[1]]          0.1731851           0.6807117 0.06598575
#> [Release[3]]-[Release[2]]          0.9741268           0.3331098 0.05790368
#> [Release[4]]-[Release[3]]          0.3781167           0.5459076 0.02662701
#> [Release[5]]-[Release[4]]          0.1074795           0.7526197 0.02307918
#>                           White.value White.pvalue     arch.R2 arch.value
#> [Release[2]]-[Release[1]]   1.8476009    0.3970074 0.027125777 0.73239597
#> [Release[3]]-[Release[2]]   1.5633995    0.4576275 0.009572775 0.24889216
#> [Release[4]]-[Release[3]]   0.5591672    0.7560985 0.089050061 1.78100121
#> [Release[5]]-[Release[4]]   0.2077126    0.9013548 0.009981670 0.07985336
#>                           arch.pvalue
#> [Release[2]]-[Release[1]]   0.3921077
#> [Release[3]]-[Release[2]]   0.6178562
#> [Release[4]]-[Release[3]]   0.1820264
#> [Release[5]]-[Release[4]]   0.7774962