Linear regression model of R_v on R_{v-1},...,R_{v-p}. (p=nrevs)
Arguments
- revisions.view
mts object. Vertical or diagonal view of the
get_revisions()
output- nrevs
Integer. Number of lags to consider.
- na.zero
Boolean whether missing values should be considered as 0 or rather as data not (yet) available (the default).
Examples
## Simulated data
df_long <- simulate_long(
n_period = 10L * 4L,
n_revision = 5L,
periodicity = 4L,
start_period = as.Date("2010-01-01")
)
## Create vintage and test
vintages <- create_vintages(df_long, periodicity = 4L)
revisions <- get_revisions(vintages, gap = 1)
orthogonallyModel1(revisions$diagonal_view)
#> N R2 F intercept.estimate
#> [Release[3]]-[Release[2]] 6 0.03016567 0.1244157 -0.04145696
#> [Release[4]]-[Release[3]] NaN NaN NaN NaN
#> [Release[5]]-[Release[4]] NaN NaN NaN NaN
#> intercept.stderr intercept.pvalue x(1).estimate
#> [Release[3]]-[Release[2]] 1.201465 0.9741274 -0.2289974
#> [Release[4]]-[Release[3]] NaN NaN NaN
#> [Release[5]]-[Release[4]] NaN NaN NaN
#> x(1).stderr x(1).pvalue skewness kurtosis
#> [Release[3]]-[Release[2]] 0.6492215 0.7420956 -0.4712289 -1.115913
#> [Release[4]]-[Release[3]] NaN NaN NaN NaN
#> [Release[5]]-[Release[4]] NaN NaN NaN NaN
#> JarqueBera.value JarqueBera.pvalue BreuschPagan.R2
#> [Release[3]]-[Release[2]] 0.4444766 0.8007245 0.176979
#> [Release[4]]-[Release[3]] NaN NaN NaN
#> [Release[5]]-[Release[4]] NaN NaN NaN
#> BreuschPagan.value BreuschPagan.pvalue White.R2
#> [Release[3]]-[Release[2]] 0.8601432 0.4061935 0.4753361
#> [Release[4]]-[Release[3]] NaN NaN NaN
#> [Release[5]]-[Release[4]] NaN NaN NaN
#> White.value White.pvalue arch.R2 arch.value
#> [Release[3]]-[Release[2]] 2.852017 0.2402661 0.005718509 0.02859254
#> [Release[4]]-[Release[3]] NaN NaN NaN NaN
#> [Release[5]]-[Release[4]] NaN NaN NaN NaN
#> arch.pvalue
#> [Release[3]]-[Release[2]] 0.8657233
#> [Release[4]]-[Release[3]] NaN
#> [Release[5]]-[Release[4]] NaN