Linear regression models to determine whether revisions are ‘news’ or ‘noise’. For 'noise': R (revisions) on P (preliminary estimate). For 'news': R on L (latter estimate).
Arguments
- vintages.view
mts object. Vertical or diagonal view of the
create_vintages()
output- gap
Integer. Gap to consider between each vintages. Default is 1 which means that revisions are calculated and tested for each vintages consecutively.
- na.zero
Boolean whether missing values should be considered as 0 or rather as data not (yet) available (the default).
Examples
## Simulated data
df_long <- simulate_long(
n_period = 10L * 4L,
n_revision = 5L,
periodicity = 4L,
start_period = as.Date("2010-01-01")
)
## Create vintage and test
vintages <- create_vintages(df_long, periodicity = 4L)
signalnoise(vintages$diagonal_view)
#> News.R2 News.F News.pvalue Noise.R2 Noise.F
#> [Release[2]]-[Release[1]] 0.02680475 0.3484618 0.7132892 0.14707125 1.9119262
#> [Release[3]]-[Release[2]] 0.09398012 0.8458211 0.4687990 0.03987909 0.3589118
#> [Release[4]]-[Release[3]] 0.33361781 1.3344712 0.4283625 0.41159898 1.6463959
#> [Release[5]]-[Release[4]] NaN NaN NaN NaN NaN
#> Noise.pvalue
#> [Release[2]]-[Release[1]] 0.1938089
#> [Release[3]]-[Release[2]] 0.7105771
#> [Release[4]]-[Release[3]] 0.3778724
#> [Release[5]]-[Release[4]] NaN