Linear regression models to determine whether revisions are ‘news’ or ‘noise’. For 'noise': R (revisions) on P (preliminary estimate). For 'news': R on L (latter estimate).
Arguments
- vintages.view
mts object. Vertical or diagonal view of the
create_vintages()
output- gap
Integer. Gap to consider between each vintages. Default is 1 which means that revisions are calculated and tested for each vintages consecutively.
- na.zero
Boolean whether missing values should be considered as 0 or rather as data not (yet) available (the default).
Examples
## Simulated data
df_long <- simulate_long(
n_period = 10L * 4L,
n_revision = 5L,
periodicity = 4L,
start_period = as.Date("2010-01-01")
)
## Create vintage and test
vintages <- create_vintages(df_long, periodicity = 4L)
signalnoise(vintages[["diagonal_view"]])
#> News.R2 News.F News.pvalue Noise.R2
#> [Release[2]]-[Release[1]] 0.01952634 0.6248429 0.5421682 0.002009833
#> [Release[3]]-[Release[2]] 0.03125519 0.6876142 0.5142713 0.054619515
#> [Release[4]]-[Release[3]] 0.05215226 0.5215226 0.6124930 0.113613559
#> [Release[5]]-[Release[4]] 1.00000000 2.0000000 NaN 1.000000000
#> Noise.F Noise.pvalue
#> [Release[2]]-[Release[1]] 0.06431466 0.9378388
#> [Release[3]]-[Release[2]] 1.20162933 0.3215052
#> [Release[4]]-[Release[3]] 1.13613559 0.3678697
#> [Release[5]]-[Release[4]] 2.00000000 NaN