Linear regression models to determine whether revisions are ‘news’ or ‘noise’. For 'noise': R (revisions) on P (preliminary estimate). For 'news': R on L (latter estimate).
Arguments
- vintages.view
mts object. Vertical or diagonal view of the
create_vintages()
output- gap
Integer. Gap to consider between each vintages. Default is 1 which means that revisions are calculated and tested for each vintages consecutively.
- na.zero
Boolean whether missing values should be considered as 0 or rather as data not (yet) available (the default).
Examples
## Simulated data
df_long <- simulate_long(
n_period = 10L * 4L,
n_revision = 5L,
periodicity = 4L,
start_period = as.Date("2010-01-01")
)
## Create vintage and test
vintages <- create_vintages(df_long, periodicity = 4L)
signalnoise(vintages[["diagonal_view"]])
#> News.R2 News.F News.pvalue Noise.R2
#> [Release[2]]-[Release[1]] 2.092282e-03 0.0669530179 0.9353785 0.002278357
#> [Release[3]]-[Release[2]] 2.406276e-04 0.0060156911 0.9940039 0.006630292
#> [Release[4]]-[Release[3]] 8.888437e-06 0.0001244381 0.9998756 0.010529377
#> [Release[5]]-[Release[4]] 9.803707e-02 0.3921482835 0.7183143 0.078961499
#> Noise.F Noise.pvalue
#> [Release[2]]-[Release[1]] 0.07290742 0.9298511
#> [Release[3]]-[Release[2]] 0.16575729 0.8482549
#> [Release[4]]-[Release[3]] 0.14741128 0.8644779
#> [Release[5]]-[Release[4]] 0.31584599 0.7599674