Unit root test
Arguments
- vintages.view
mts object. Vertical or diagonal view of the
create_vintages()
output- adfk
Number of lags to consider for Augmented Dicky-Fuller (ADF) test
- na.zero
Boolean whether missing values should be considered as 0 or rather as data not (yet) available (the default).
Examples
## Simulated data
df_long <- simulate_long(
n_period = 10L * 4L,
n_revision = 5L,
periodicity = 4L,
start_period = as.Date("2010-01-01")
)
## Create vintage and test
vintages <- create_vintages(df_long, periodicity = 4L)
unitroot(vintages[["diagonal_view"]])
#> DF.value DF.stderr DF.statistic DF.pvalue ADF.value ADF.stderr
#> Release[1] 1.012299 0.01360221 0.9042249 0.8982287 1.012901 0.01454395
#> Release[2] 1.030057 0.01434186 2.0957251 0.9887260 1.026659 0.01646841
#> Release[3] 1.036825 0.01448038 2.5431288 0.9958057 1.027811 0.01731627
#> Release[4] 1.133463 0.07375288 1.8096039 0.9780057 1.121354 0.11532950
#> Release[5] 1.115859 0.12234962 0.9469484 0.9027843 1.098563 0.27637837
#> ADF.statistic ADF.pvalue DFCT.value DFCT.stderr DFCT.statistic
#> Release[1] 0.8870500 0.8953677 0.94672919 0.08075693 -0.6596438
#> Release[2] 1.6187872 0.9708928 0.81436748 0.15754395 -1.1782903
#> Release[3] 1.6060837 0.9699941 0.65786013 0.19517929 -1.7529517
#> Release[4] 1.0522356 0.9178617 0.09458938 0.48059457 -1.8839385
#> Release[5] 0.3566233 0.7765613 -0.25027918 0.66292368 -1.8860077
#> DFCT.pvalue PP.value PP.stderr PP.statistic PP.pvalue
#> Release[1] 0.9665384 1.012299 0.01360221 0.8327207 0.8861984
#> Release[2] 0.8932913 1.030057 0.01434186 2.0489660 0.9875731
#> Release[3] 0.7103413 1.036825 0.01448038 2.4427657 0.9946847
#> Release[4] 0.6448796 1.133463 0.07375288 2.1366437 0.9878585
#> Release[5] 0.6432629 1.115859 0.12234962 1.1188415 0.9262597